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The Lady Tasting Tea

It was a summer afternoon in
Cambridge, England, in the 1920s.

A groups of university dons, their wifes,
and some guests were having afternoon
tea.

A lady was insisting that tea tasted
different depending upon whether the
tea was poured into the milk OR the
milk was poured into the tea.
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The Lady Tasting Tea

“Sheer nonsense”, the scientific minds
among the men scoffed at this.

A thin, short man, with thick glasses,
Ronald Fisher, pounced on the problem:
“Let us test the proposition!”
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ASA Statement on p-values
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Hypothesis Testing

Fisher’s notion of a null hypothesis
— Null hypothesis
— Popularize p-value

Neyman-Pearson Lemma
— Error of the 2nd kind
— Alternative/competing hypothesis
— Power function
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Most influential books on statistical methods

Statistical Methods for Research Workers

The Design of Experiments
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“...the best thing about being a statistician...”

“... is that you get to play in everyone’s backyard.”
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Misuse of p-value

Q: Why do so many colleges and grad
schools teach p = 0.05?

A: Because that’s still what the
scientific community and journal editors
use.

Q: Why do so many people still use p =
0.05?

A: Because that’s what they were
taught in college or grad school.

“We teach it because it’s what we do; we do it because it’s what we
teach.”
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Fisher’s words in SMRW

“Personally, the writer prefers to set a low
standard of significance at 5 percentage
point. . . A scientific fact should be regarded
as experimentally established only if a
properly designed experiment rarely fails to
give this level of significance.”
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ASA Statement on p-values
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pop quiz

Which(s) of the following statements is/are reasonable?

p-value is a probability.

p > 0.05 is the probability that the null hypothesis is true.

1 minus the p-value is the probability that the alternative hypothesis
is true.

A statistically significant test result (p ≤ 0.05) means that the test
hypothesis is false or should be rejected.

A p-value greater than 0.05 means that no effect was observed.
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The status quo

Informally, a p-value is the probability under a specified statistical
model that a statistical summary of the data (e.g., the sample mean
difference between two compared groups) would be equal to or more
extreme than its observed value.
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Six principles of p-value

1. P-values can indicate how incompatible the data are with a
specified statistical model.
— The most common context is a model (under a set of
assumptions): H0

— Often H0 postulates the absence of an effect (e.g. no difference
between two groups)
— The smaller the p-value, the greater the incompatibility of the
data with H0

— Incompatibility casting doubt on H0

2. P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were produced by
random chance alone.
— Never turn a p-value into a statement about the truth of H0

— p-value is a statement about the relationship between the data
and H0, NOT about the explanation (H0) itself.
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Six principles of p-value (cont’d)

3. Scientific conclusions and business or policy decisions should NOT
be based only on whether a p-value passes a specific threshold.
— “bright-line” rule (e.g. p < 0.05 alone) can lead to erroneous
beliefs and poor decision making.
— A conclusion does not immediately become “true” on one side of
the divide and “false” on the other.
— Researchers should bring many contextual factors into play to
derive scientific inferences, including the design of a study, the quality
of the measurements, the external evidence for the phenomenon under
study, and the validity of assumptions that underlie the data analysis.
— Using p < 0.05 alone as a license for making a claim of a scientific
finding leads to considerable distortion of the scientific process.

4. Proper inference requires full reporting and transparency
— number of hypotheses explored, all data collection decisions, all
statistical analyses conducted
— No “cherry-picking”
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Six principles of p-value (cont’d)

5. A p-value, or statistical significance, does not measure the size of
an effect or the importance of a result.
— pval 6=effect size
— Statistical sig. vs. biological sig.

6. By itself, a p-value does not provide a good measure of evidence
regarding a model or hypothesis.
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Usage of p-value

Good statistical practice is an integral part of good scientific
practice.
— study design and conduct, summaries of data, understanding of
the phenomenon under study, interpretation of results in context,
complete reporting, proper logical understanding of results.

No single index should substitute for scientific reasoning.
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Hypothesis testing in genomics

Gene/protein/metabolite expression data.

After all the pre-processing, we have a feature by sample matrix of
expression indices.
It is like an molecular “fingerprint” of each sample.
The most common use: to find biomarkers of a disease.
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Hypothesis testing in genomics

Genetics/SNP data.
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The problem: multiple testing

How does the problem of multiple testing arise?
Let us use T to denote the random variable (e.g. test statistics), use F (t)
to denote its cumulative distribution function (CDF). By definition, we
have F (t) ≡ Pr(T < t) for all t.
F () is invertible (in general), we can derive the distribution of the random
p-value P = F (T ) (or symmetrically 1− F (T )) as follows:

Pr(P < p) = Pr(F (T ) < p) = Pr(T < F−1(p)) = F (F−1(p)) = p

Now we can conclude that the distribution of p-value as a RV P is uniform
on [0, 1].
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The problem: multiple testing

Theorem

Under the null hypothesis, p-values distribute uniformly on [0, 1].

Suppose in a GWAS studies with 100,000 SNPs are tested for genetic
association separately, you found 6,000 significant (p < 0.05) loci.
Is that good?

NO! Because even if there is no genetic association at all (H0 holds),
you’ll observe 100, 000× 0.05 = 5, 000 significant loci.
So... out of the 6,000 significant loci you identified, 5,000 could be false
positives.
We use False Discovery Rate (FDR) to conceptualize the rate of type I
errors. Here, FDR = 5000

6000 = 0.83 is indeed miserable.
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General considerations

Simultaneously test M hypotheses.
Q is # true null – genes that didn’t change (unobserved)
R is # rejected – genes called significant (observed)
U, V, T, S are unobservable random variables.
V: number of type-I errors; T: number of type-II errors.
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General considerations

Sensitivity: E[S/(M-Q)]
Specificity: E[U/Q]
False discovery rate (FDR) = E(V/R)
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General considerations
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General considerations

Introduction 25 / 35



Family-wise error rate (FWER)

When we have multiple tests, let G be the number of true nulls called
significant (false positives). Then,

FWER = Pr(G ≥ 1) = 1− Pr(G = 0)

“Family”: a group of hypothesis that are similar in prupose, and need to
be jointly accurate.

Bonferroni correction is one version of FWER control.
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Bonferroni correction

Suppose we have m tests, m = 1, 2, ...,M .
Bonferroni correction: An easy and popular approach to adjust the
significance level of each test so as to preserve the FWER:

α = P (reject at least one H
(m)
0 |H(m)

0 is true for all m)

= P (∪m{reject H
(m)
0 |H(m)

0 is true})

≤
∑
m

P (reject H
(m)
0 |H(m)

0 is true)

= Mα′

FWER can be kept < α, if each individual test has significance level α/M .
e.g. α = 0.01, and M = 500, 000, then α′ = 2× 10−8.
Bonferroni correction is the simplest and most conservative approach.
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Other methods in multiple testing

FDR - (Benjamini and Hochberg) BH procedure

q-value, pFDR

Efron’s Local FDR
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Back on the two types of errors

Type I Error: False Positive. Reject H0 when there is in fact NO true
difference.

Type II Error: False Negative. Not reject the null hypothesis when
there IS in fact true difference.
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Statistical Power

Statistical power is the probability that the test correctly rejects the
null hypothesis.

In other words: Given the alternative hypothesis (HA) is the underlying
truth, the probability that we’ll reject H0 is called statistical power.

Power = 1 - Type II error.
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Other puzzle pieces needed for power evaluation

Significance level (α)

Sample size

Effect size

Variability
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Primary components of power

Power = 1 – shaded blue area.
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Power calculation example 1

z-test

Denote P (Z ≤ z) = Φ(z), the area to the left of z under the standard
Normal curve. Define effect size 4 = δ = µ−µ0

σ . Consider x̄ ∼ N(µ, σ2
x̄):

The 2nd part is often ignored due to extremely small resulting value.
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Power calculation example 2

Chi-square test

where N is the total count in all the cells. w is the effect size.
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Overview of genomics data analysis workflow
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