PQHS 452 Multiple Testing and Statistical Power

The Lady Tasting Tea

- It was a summer afternoon in Cambridge, England, in the 1920s.
- A groups of university dons, their wifes, and some guests were having afternoon tea.
- A lady was insisting that tea tasted different depending upon whether *the tea was poured into the milk* OR *the milk was poured into the tea*.

The Lady Tasting Tea

Fisher in 1913

- "Sheer nonsense", the scientific minds among the men scoffed at this.
- A thin, short man, with thick glasses, Ronald Fisher, pounced on the problem: "Let us test the proposition!"

ASA Statement on p-values

DAVID SALSBURG

"Entertaining ... The pleasures of the book emerge easily ... and the end result is both educational and fun."—Nature Medicine

Copyrighted Material

э

イロト イポト イヨト イヨト

- Fisher's notion of a null hypothesis
 - Null hypothesis
 - Popularize p-value
- Neyman-Pearson Lemma
 - Error of the 2nd kind
 - Alternative/competing hypothesis
 - Power function

- Statistical Methods for Research Workers
- The Design of Experiments

John Wilder Tukey

"... is that you get to play in everyone's backyard."

Misuse of p-value

- Q: Why do so many colleges and grad schools teach p = 0.05?
- A: Because that's still what the scientific community and journal editors use.
- Q: Why do so many people still use p = 0.05?
- A: Because that's what they were taught in college or grad school.

Misuse of p-value

- Q: Why do so many colleges and grad schools teach p = 0.05?
- A: Because that's still what the scientific community and journal editors use.
- Q: Why do so many people still use p = 0.05?
- A: Because that's what they were taught in college or grad school.

"We teach it because it's what we do; we do it because it's what we teach."

"Personally, the writer prefers to set a low standard of significance at 5 percentage point... A scientific fact should be regarded as experimentally established only if a properly designed experiment rarely fails to give this level of significance."

The American Statistician

ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: https://www.tandfonline.com/loi/utas20

The ASA Statement on *p*-Values: Context, Process, and Purpose

Ronald L. Wasserstein & Nicole A. Lazar

To cite this article: Ronald L. Wasserstein & Nicole A. Lazar (2016) The ASA Statement on p-Values: Context, Process, and Purpose, The American Statistician, 70:2, 129-133, DOI: 10.1080/00031305.2016.1154108

To link to this article: https://doi.org/10.1080/00031305.2016.1154108

▲□▶▲□▶▲□▶▲□▶ ▲□ シック

Which(s) of the following statements is/are reasonable?

- p-value is a probability.
- p > 0.05 is the probability that the null hypothesis is true.
- 1 minus the p-value is the probability that the alternative hypothesis is true.
- A statistically significant test result ($p \le 0.05$) means that the test hypothesis is false or should be rejected.
- A p-value greater than 0.05 means that no effect was observed.

Informally, a p-value is the probability **under a specified statistical model** that a statistical summary of the data (e.g., the sample mean difference between two compared groups) would be *equal to or more extreme* than its observed value.

Six principles of p-value

- 1. P-values can indicate how incompatible the data are with a specified statistical model.
 - The most common context is a model (under a set of assumptions): H_0

— Often H_0 postulates the absence of an effect (e.g. no difference between two groups)

— The smaller the p-value, the greater the incompatibility of the data with ${\cal H}_0$

— Incompatibility casting doubt on H_0

Six principles of p-value

- 1. P-values can indicate how incompatible the data are with a specified statistical model.
 - The most common context is a model (under a set of assumptions): H_0

— Often H_0 postulates the absence of an effect (e.g. no difference between two groups)

— The smaller the p-value, the greater the incompatibility of the data with ${\cal H}_0$

- Incompatibility casting doubt on H_0
- 2. P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.
 - Never turn a p-value into a statement about the truth of H_0

— p-value is a statement about the **relationship** between the data and H_0 , NOT about the **explanation** (H_0) itself.

Six principles of p-value (cont'd)

• 3. Scientific conclusions and business or policy decisions should NOT be based only on whether a p-value passes a specific threshold.

— "bright-line" rule (e.g. p < 0.05 alone) can lead to erroneous beliefs and poor decision making.

— A conclusion does not immediately become "true" on one side of the divide and "false" on the other.

— Researchers should bring many contextual factors into play to derive scientific inferences, including the design of a study, the quality of the measurements, the external evidence for the phenomenon under study, and the validity of assumptions that underlie the data analysis. — Using p < 0.05 alone as a license for making a claim of a scientific finding leads to considerable distortion of the scientific process.

《曰》《聞》《臣》《臣》 三臣

Six principles of p-value (cont'd)

- 3. Scientific conclusions and business or policy decisions should NOT be based only on whether a p-value passes a specific threshold.
 - "bright-line" rule (e.g. p < 0.05 alone) can lead to erroneous beliefs and poor decision making.
 - A conclusion does not immediately become "true" on one side of the divide and "false" on the other.
 - Researchers should bring many contextual factors into play to derive scientific inferences, including the design of a study, the quality of the measurements, the external evidence for the phenomenon under study, and the validity of assumptions that underlie the data analysis. Using p < 0.05 alone as a license for making a claim of a scientific finding leads to considerable distortion of the scientific process.
- 4. Proper inference requires full reporting and transparency

 number of hypotheses explored, all data collection decisions, all statistical analyses conducted
 - No "cherry-picking"

- 5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.
 - $pval \neq effect size$
 - Statistical sig. vs. biological sig.

- 5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.
 - $pval \neq effect size$
 - Statistical sig. vs. biological sig.
- 6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

• Good statistical practice is an integral part of good scientific practice.

— study design and conduct, summaries of data, understanding of the phenomenon under study, interpretation of results in context, complete reporting, proper logical understanding of results. • Good statistical practice is an integral part of good scientific practice.

— study design and conduct, summaries of data, understanding of the phenomenon under study, interpretation of results in context, complete reporting, proper logical understanding of results.

• No single index should substitute for scientific reasoning.

Gene/protein/metabolite expression data.

	control 1	control 2		control 30	cancer 1	cancer 2		cancer 30
gene 1	9.249132	9.771213	9.390076	9.395176	8.583321	9.296368	8.821702	7.876008
gene 2	6.989496	5.84592	6.063214	4.995175	5.143495	5.426189	6.116481	5.011464
gene 3	4.549009	5.298832	4.028992	4.730776	3.661116	4.268401	4.078334	4.109569
gene 4	7.042218	7.156791	6.516016	6.4736	6.785386	6.871651	6.612583	6.447812
gene 5	2.842815	3.210668	3.168886	3.203355	3.055105	3.258568	3.068973	3.149365
gene 6	6.076624	6.255116	5.53142	7.186467	6.117253	5.925629	6.542273	6.440859
gene 7	4.001927	4.408226	4.426111	4.218325	4.424755	4.085715	3.99024	4.258238
gene 8	4.011074	4.147679	3.506027	3.450706	3.771826	3.546628	3.643631	3.816385
gene 9	6.374999	7.199643	5.660234	8.143042	5.13446	7.064966	7.252155	7.269149
gene 5000	3.710801	3.787264	3.713254	3.393635	3.646768	3.556236	3.573936	3.861748

After all the pre-processing, we have a feature by sample matrix of expression indices.

It is like an molecular "fingerprint" of each sample.

The most common use: to find biomarkers of a disease.

イロト 不得 トイラト イラト 一日

Genetics/SNP data.

	Numb	Number of M_1 alleles			
	0	1	2	Total	
Case	r_0	r_1	r_2	R	
Control	s_0	s_1	s_2	S	
Total	n_0	n_1	n_2	N	

∃ >

How does the problem of multiple testing arise?

Let us use T to denote the random variable (e.g. test statistics), use F(t) to denote its cumulative distribution function (CDF). By definition, we have $F(t) \equiv Pr(T < t)$ for all t.

F() is invertible (in general), we can derive the distribution of the random p-value P = F(T) (or symmetrically 1 - F(T)) as follows:

$$Pr(P < p) = Pr(F(T) < p) = Pr(T < F^{-1}(p)) = F(F^{-1}(p)) = p$$

Now we can conclude that the distribution of p-value as a RV P is uniform on [0,1].

イロト イポト イヨト イヨト 二日

Theorem

Under the null hypothesis, p-values distribute uniformly on [0,1].

Suppose in a GWAS studies with 100,000 SNPs are tested for genetic association separately, you found 6,000 significant (p < 0.05) loci. Is that good?

Theorem

Under the null hypothesis, p-values distribute uniformly on [0,1].

Suppose in a GWAS studies with 100,000 SNPs are tested for genetic association separately, you found 6,000 significant (p < 0.05) loci. Is that good?

NO! Because even if there is no genetic association at all (H_0 holds), you'll observe $100,000 \times 0.05 = 5,000$ significant loci.

So... out of the 6,000 significant loci you identified, 5,000 could be false positives.

Theorem

Under the null hypothesis, p-values distribute uniformly on [0,1].

Suppose in a GWAS studies with 100,000 SNPs are tested for genetic association separately, you found 6,000 significant (p < 0.05) loci. Is that good?

NO! Because even if there is no genetic association at all (H_0 holds), you'll observe $100,000 \times 0.05 = 5,000$ significant loci.

So... out of the 6,000 significant loci you identified, 5,000 could be false positives.

We use **False Discovery Rate** (FDR) to conceptualize the rate of type I errors. Here, $FDR = \frac{5000}{6000} = 0.83$ is indeed miserable.

	Significant	Non-significant	
No change	V	U	Q
Differentially expressed	S	т	M-Q
	R	M-R	М

Simultaneously test M hypotheses.

Q is # true null – genes that didn't change (unobserved)

R is # rejected – genes called significant (observed)

U, V, T, S are unobservable random variables.

V: number of type-I errors; T: number of type-II errors.

	Significant	Non-significant	
No change	V	U	Q
Differentially expressed	S	т	M-Q
	R	M-R	М

Sensitivity: E[S/(M-Q)]Specificity: E[U/Q]False discovery rate (FDR) = E(V/R)

General considerations

590

	Significant	Non- significant	
No change	5	49795	49800
Differentially expressed	95	105	200
	100	49900	50000

It makes more sense than this, which leans too heavily towards sensitivity:

	Significant	Non- significant	
No change	320	49480	49800
Differentially expressed	180	20	200
	500	49500	50000

	Significant	Non- significant	
No change	5	49795	49800
Differentially expressed	95	105	200
	100	49900	50000

It makes more sense than this, which leans too heavily towards specificity:

	Significant	Non- significant	
No change	1	49799	49800
Differentially expressed	14	186	200
	15	49985	50000

-∢ ∃ ▶

When we have multiple tests, let G be the number of true nulls called significant (false positives). Then,

$$FWER = Pr(G \ge 1) = 1 - Pr(G = 0)$$

"Family": a group of hypothesis that are similar in prupose, and need to be jointly accurate.

Bonferroni correction is one version of FWER control.

Suppose we have m tests, m = 1, 2, ..., M.

Bonferroni correction: An easy and popular approach to adjust the significance level of each test so as to preserve the FWER:

$$\begin{aligned} \alpha &= P(\text{reject at least one } H_0^{(m)} | H_0^{(m)} \text{ is true for all } m) \\ &= P(\cup_m \{\text{reject } H_0^{(m)} | H_0^{(m)} \text{ is true}\}) \\ &\leq \sum_m P(\text{reject } H_0^{(m)} | H_0^{(m)} \text{ is true}) \\ &= M\alpha' \end{aligned}$$

FWER can be kept $< \alpha$, if each individual test has significance level α/M . e.g. $\alpha = 0.01$, and M = 500,000, then $\alpha' = 2 \times 10^{-8}$. Bonferroni correction is the simplest and most conservative approach.

- FDR (Benjamini and Hochberg) BH procedure
- q-value, pFDR
- Efron's Local FDR

- **Type I Error**: <u>False Positive</u>. Reject H_0 when there is in fact NO true difference.
- **Type II Error**: False Negative. Not reject the null hypothesis when there IS in fact true difference.

• Statistical power is the probability that the test correctly rejects the null hypothesis.

In other words: Given the alternative hypothesis (H_A) is the underlying truth, the probability that we'll reject H_0 is called statistical power.

Power = 1 - Type II error.

- Significance level (α)
- Sample size
- Effect size
- Variability

Primary components of power

Power = 1 - shaded blue area.

z-test

Denote $P(Z \le z) = \Phi(z)$, the area to the left of z under the standard Normal curve. Define effect size $\Delta = \delta = \frac{\mu - \mu_0}{\sigma}$. Consider $\bar{x} \sim N(\mu, \sigma_{\bar{x}}^2)$:

Power =
$$P_{\mu}(\bar{x} > \mu_0 + z_{1-\alpha/2}\sigma_{\bar{x}}) + P_{\mu}(\bar{x} < \mu_0 - z_{1-\alpha/2}\sigma_{\bar{x}})$$

= $P(\frac{\bar{x} - \mu}{\sigma_{\bar{x}}} > \frac{\mu_0 - \mu}{\sigma_{\bar{x}}} + z_{1-\alpha/2}) + P(\frac{\bar{x} - \mu}{\sigma_{\bar{x}}} < \frac{\mu_0 - \mu}{\sigma_{\bar{x}}} - z_{1-\alpha/2})$
= $\Phi(\sqrt{n\Delta} - z_{1-\alpha/2}) + \Phi(-\sqrt{n\Delta} - z_{1-\alpha/2})$

The 2nd part is often ignored due to extremely small resulting value.

イロト イヨト イヨト ・

Chi-square test

- 1. Find x_{α} such that $1 \chi^2(x_{\alpha}|df) = \alpha$, where $\chi^2(x_{\alpha}|df)$ is the area to the left of x under a Chi-square distribution with df degrees of freedom.
- 2. Power = $1 \chi'^2_{df,\lambda}$, where $\chi'^2_{k,\lambda}$ is the left-tail area of the noncentral Chi-square distribution with k degrees of freedom and non-centrality parameter λ . Note that $\lambda = Nw^2$.

where N is the total count in all the cells. w is the effect size.

< □ > < □ > < □ > < □ > < □ > < □ >