
0123456789();:

Humans make sense of the world around them by
observing it, and learning to predict what might happen
next. Consider a child learning to catch a ball: the child
(usually) knows nothing about the physical laws that
govern the motion of a thrown ball; however, by a pro-
cess of observation, trial and error, the child adjusts his
or her understanding of the ball’s motion, and how to
move his or her body, until he or she is able to catch it
reliably. In other words, the child has learned how to
catch the ball by building a sufficiently accurate and
useful ‘model’ of the process, by repeatedly testing this
model against the data and by making corrections to
the model to make it better.

‘Machine learning’ refers broadly to the process of fit-
ting predictive models to data or of identifying informa-
tive groupings within data. The field of machine learning
essentially attempts to approximate or imitate humans’
ability to recognize patterns, albeit in an objective man-
ner, using computation. Machine learning is particularly
useful when the dataset one wishes to analyse is too large
(many individual data points) or too complex (contains
a large number of features) for human analysis and/or
when it is desired to automate the process of data analy-
sis to establish a reproducible and time-​efficient pipeline.
Data from biological experiments frequently possess
these properties; biological datasets have grown enor-
mously in both size and complexity in the past few dec-
ades, and it is becoming increasingly important not only
to have some practical means of making sense of this
data abundance but also to have a sound understand-
ing of the techniques that are used. Machine learning
has been used in biology for a number of decades, but
it has steadily grown in importance to the point where

it is used in nearly every field of biology. However, only
in the past few years has the field taken a more critical
look at the available strategies and begun to assess which
methods are most appropriate in different scenarios,
or even whether they are appropriate at all.

This Review aims to inform biologists on how they
can start to understand and use machine learning tech-
niques. We do not intend to present a thorough literature
review of articles using machine learning for biological
problems1, or to describe the detailed mathematics of
various machine learning methods2,3. Instead, we focus
on linking particular techniques to different types of bio-
logical data (similar reviews are available for specific
biological disciplines; see, for example, refs4–11). We also
attempt to distil some best practices of how to practi-
cally go about the process of training and improving a
model. The complexity of biological data presents pitfalls
as well as opportunities for their analysis using machine
learning techniques. To address these, we discuss the
widespread issues that affect the validity of studies, with
guidance on how to avoid them. The bulk of the Review
is devoted to the description of a number of machine
learning techniques, and in each case we provide exam-
ples of the appropriate application of the method and
how to interpret the results. The methods discussed
include traditional machine learning methods, as these
are still the best choices in many cases, and deep learning
with artificial neural networks, which are emerging as
the most effective methods for many tasks. We finish
by describing what the future holds for incorporating
machine learning in data analysis pipelines in biology.

There are two goals when one is using machine learn-
ing in biology. The first is to make accurate predictions

Deep learning
Machine learning methods
based on neural networks.
The adjective ‘deep’ refers
to the use of many hidden
layers in the network, two
hidden layers as a minimum
but usually many more than
that. Deep learning is a subset
of machine learning, and
hence of artificial intelligence
more broadly.

Artificial neural networks
A collection of connected
nodes loosely representing
neuron connectivity in a
biological brain. Each node is
part of a layer and represents
a number calculated from the
previous layer. The connections,
or edges, allow a signal to flow
from the input layer to the
output layer via hidden layers.

A guide to machine learning
for biologists
Joe G. Greener   1,2, Shaun M. Kandathil   1,2, Lewis Moffat1 and David T. Jones   1 ✉

Abstract | The expanding scale and inherent complexity of biological data have encouraged
a growing use of machine learning in biology to build informative and predictive models of the
underlying biological processes. All machine learning techniques fit models to data; however,
the specific methods are quite varied and can at first glance seem bewildering. In this Review,
we aim to provide readers with a gentle introduction to a few key machine learning techniques,
including the most recently developed and widely used techniques involving deep neural
networks. We describe how different techniques may be suited to specific types of biological data,
and also discuss some best practices and points to consider when one is embarking on experiments
involving machine learning. Some emerging directions in machine learning methodology are
also discussed.

1Department of Computer
Science, University College
London, London, UK.
2These authors contributed
equally: Joe G. Greener,
Shaun M. Kandathil.

✉e-​mail: d.t.jones@ucl.ac.uk

https://doi.org/10.1038/
s41580-021-00407-0

REVIEWS

Nature Reviews | Molecular Cell Biology

http://orcid.org/0000-0002-5154-1929
http://orcid.org/0000-0002-2671-2140
http://orcid.org/0000-0001-8626-3765
mailto:d.t.jones@ucl.ac.uk
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1038/s41580-021-00407-0
http://crossmark.crossref.org/dialog/?doi=10.1038/s41580-021-00407-0&domain=pdf

0123456789();:

where experimental data are lacking, and use these
predictions to guide future research efforts. However,
as scientists we seek to understand the world, and so
the second goal is to use machine learning to further
our understanding of biology. Throughout this guide
we discuss how these two goals often come into con-
flict in machine learning, and how to extract under-
standing from models that are often treated as ‘black
boxes’ because their inner workings are difficult to
understand12.

Key concepts
We first introduce a number of key concepts in machine
learning. Where possible, we illustrate these concepts
with examples taken from biological literature.

General terms. A dataset comprises a number of data
points or instances, each of which can be thought of
as a single observation from an experiment. Each data
point is described by a (usually fixed) number of fea-
tures. Examples of such features include length, time,
concentration and gene expression level. A machine
learning task is an objective specification for what we
want a machine learning model to accomplish. For
example, for an experiment investigating the expres-
sion of genes over time, we might want to predict the
rate of conversion of a specific metabolite into another
species. In this case, the features ‘gene expression level’
and ‘time’ could be termed input features or simply
inputs for the model, and ‘conversion rate’ would be
the desired output of the model; that is, the quantity
we are interested in predicting. A model can have any
number of input and output features. Features can be
either continuous (taking continuous numerical values)
or categorical (taking only discrete values). Quite often,
categorical features are simply binary and are either true
(1) or false (0).

Supervised and unsupervised learning. ‘Supervised
machine learning’ refers to the fitting of a model to
data (or a subset of data) that have been labelled —
where there exists some ground truth property, which
is usually experimentally measured or assigned by
humans. Examples include protein secondary struc-
ture prediction13 and prediction of genome accessibi
lity to genome-​regulatory factors14. In both cases, the
ground truth is derived ultimately from laboratory
observations, but often these raw data are preprocessed
in some way. In the case of secondary structure, for
example, the ground truth data are derived from ana-
lysing protein crystal structure data in the Protein Data
Bank, and in the latter case, the ground truth comes
from data derived from DNA-​sequencing experiments.
By contrast, unsupervised learning methods are able to
identify patterns in unlabelled data, without the need
to provide the system with the ground truth informa-
tion in the form of predetermined labels, such as finding
subsets of patients with similar expression levels in a
gene expression study15 or predicting mutation effects
from gene sequence co-​variation16. Sometimes the two
approaches are combined in semi-supervised learning,
where small amounts of labelled data are combined with

large amounts of unlabelled data. This can improve
performance in cases where labelled data are costly
to obtain.

Classification, regression and clustering problems. When
a problem involves assigning data points to a set of dis-
crete categories (for example, ‘cancerous’ or ‘not can-
cerous’), the problem is called a ‘classification problem’,
and any algorithm that performs such classification can
be said to be a classifier. By contrast, regression models
output a continuous set of values, such as predicting the
free energy change of folding after mutating a residue
in a protein17. Continuous values can be thresholded
or otherwise discretized, meaning that it is often pos-
sible to reformulate regression problems as classifi-
cation problems. For example, the free energy change
mentioned above can be binned into ranges of values
that are favourable or unfavourable for protein stability.
Clustering methods are used to predict groupings of
similar data points in a dataset, and are usually based on
some measure of similarity between data points. They
are unsupervised methods that do not require that the
examples in a dataset have labels. For example, in a
gene expression study, clustering could find subsets of
patients with similar gene expression.

Classes and labels. The discrete set of values returned
by a classifier can be made to be mutually exclusive, in
which case they are called ‘classes’. Where these values
need not be mutually exclusive, they are termed ‘labels’.
For example, a residue in a protein structure can be in
only one of multiple secondary structure classes, but
could simultaneously be assigned the non-​exclusive
labels of being α-​helical and transmembrane. Classes
and labels are usually represented by an encoding
(for example, a one-​hot encoding).

Loss or cost functions. The output or outputs of a
machine learning model are never ideal and will diverge
from the ground truth. The mathematical functions
that measure this deviation or in more general terms that
measure the amount of ‘disagreement’ between the
obtained and ideal outputs are referred to as ‘loss func-
tions’ or ‘cost functions’. In supervised learning settings,
the loss function would be a measure of deviation
of the output relative to the ground truth output. Examples
include mean squared error loss for regression problems
and binary cross entropy for classification problems.

Parameters and hyperparameters. Models are essentially
mathematical functions that operate on some set of input
features and produce one or more output values or fea-
tures. To be able to learn on training data, models con-
tain adjustable parameters whose values can be changed
over the training process to achieve the best performance
of the model (see later). In a simple regression model,
for example, each feature has a parameter that is multi-
plied by the feature value, and these are added together
to make the prediction. Hyperparameters are adjustable
values that are not considered part of the model itself
in that they are not updated during training, but which
still have an impact on the training of the model and its

Ground truth
The true value that the output
of a machine learning model
is compared with to train the
model and test performance.
These data usually come from
experimental data (for example,
accessibility of a region of
DNA to transcription factors)
or expert human annotation
(for example healthy or
pathological medical image).

Encoding
Any scheme for numerically
representing (often categorical)
data in a form suitable for use
in a machine learning model.
An encoding can be a fixed
numerical representation
(for example, one-​hot or
continuous encoding) or can
be defined using parameters
that are trained along with
the rest of a model.

One-​hot encoding
An encoding scheme that
represents a fixed set of n
categorical inputs using n
unique n-​dimensional vectors,
each with one element set
to 1 and the rest set to 0.
For example, the set of three
letters (A,B,C) could be
represented by the three
vectors [1,0,0], [0,1,0]
and [0,0,1], respectively.

Mean squared error
A loss function that calculates
the average squared difference
between the predicted values
and the ground truth. This
function heavily penalizes
outliers because it increases
rapidly as the difference
between a predicted value
and the ground truth grows.

Binary cross entropy
The most common loss
function for training a binary
classifier; that is, for tasks
aimed at answering a question
with only two choices (such
as cancer versus non-​cancer);
sometimes called ‘log loss’.

www.nature.com/nrm

R e v i e w s

0123456789();:

performance. A common example of a hyperparame-
ter is the learning rate, which controls the rate or speed
with which the model’s parameters are altered during
training.

Training, validation and testing. Before being used
to make predictions, models require training, which
involves automatically adjusting the parameters of a
model to improve its performance. In a supervised
learning setting, this involves modifying the parameters
so the model performs well on a training dataset, by
minimizing the average value of the loss or cost func-
tion (described earlier). Usually, a separate validation
dataset is used to monitor but not influence the train-
ing process so as to detect potential overfitting (see the
next section). In unsupervised settings, a cost func-
tion is still minimized, although it does not operate on
ground truth outputs. Once a model is trained, it can
be tested on data not used for training. See Box 1 for a
guide to the overall process of training and how to split
the data appropriately between training and testing sets.
A flowchart to help the overall process is shown in Fig. 1,
and some of the concepts in model training are shown
in Fig. 2.

Overfitting and underfitting. The purpose of fitting a
model to training data is to capture the ‘true’ relation-
ship between the variables in the data, such that the
model has predictive power on unseen (non-​training)
data. Models that are either overfitted or underfitted
will produce poor predictions on data not in the train-
ing set (Fig. 2d). An overfitted model will produce
excellent results on data in the training set (usually as
a result of having too many parameters), but will pro-
duce poor results on unseen data. The overfitted model
in Fig. 2d passes exactly through every training point,
and so its prediction error on the training set will be
zero. However, it is evident that this model has ‘memo-
rized’ the training data and is unlikely to produce good
results on unseen data. By contrast, an underfitted model
fails to adequately capture the relationships between the
variables in the data. This could be due to an incorrect
choice of model type, incomplete or incorrect assump-
tions about the data, too few parameters in the model
and/or an incomplete training process. The underfitted
model depicted in Fig. 2d is inadequate for the data it
is trying to fit; in this case it is evident that the vari-
ables have a non-​linear relationship, which cannot be
adequately described with a simple linear model and so
a non-​linear model would be more appropriate.

Inductive bias and the bias–variance trade-​off. The
‘inductive bias’ of a model refers to the set of assump-
tions made in the learning algorithm that leads it to
favour a particular solution to a learning problem over
others. It can be thought of as the model’s preference
for a particular type of solution to a learning problem
over others. This preference is often programmed into
the model using its specific mathematical form and/or
by using a particular loss function. For example, the
inductive bias of recurrent neural networks (RNNs; dis-
cussed later) is that there are sequential dependencies in
the input data such as the concentration of a metabolite
over time. This dependence is explicitly accounted for in
the mathematical form of an RNN. Different inductive
biases in different model types make them more suitable
and usually better performing for specific types of data.
Another important concept is the trade-​off between bias
and variance. A model with a high bias can be said to
have stronger constraints on the trained model, whereas
a model with low bias makes fewer assumptions about
the property being modelled, and can, in theory, model a
wide variety of function types. The variance of a model
describes how much the trained model changes in
response to training it on different training datasets.
In general, we desire models with very low bias and low
variance, although these objectives are often in conflict
as a model with low bias will often learn different signals
on different training sets. Controlling the bias–variance
trade-​off is key to avoiding overfitting or underfitting.

Traditional machine learning
We now discuss several key machine learning methods,
with an emphasis on their particular strengths and
weaknesses. A comparison of different machine learn-
ing approaches is shown in Table 1. We begin with a
discussion of methods not based on neural networks,

Box 1 | Doing machine learning

Here we outline the steps that should be taken when one is training a machine
learning model. there is surprisingly little guidance available on the model selection
and training process146,147, with descriptions of the stepping stones and failed models
rarely making it into published research articles. the first step, before touching any
machine learning code, should be to fully understand the data (inputs) and prediction
task (outputs) at hand. this means a biological understanding of the question, such
as knowing the origin of the data and the sources of noise, and having an idea of how
the output could theoretically be predicted from the input using biological principles.
For example, it can be reasoned that different amino acids might have preferences for
particular secondary structures in proteins, so it makes sense to predict secondary
structure from amino acid frequencies at each position in a protein sequence. it is also
important to know how the inputs and outputs are stored computationally. are they
normalized to prevent one feature having an unduly large influence on prediction?
are they encoded as binary variables or continuously? are there duplicate entries?
are there missing data elements?

Next, the data should be split to allow training, validation and testing. there are a
number of ways to do this, two of which are shown in Fig. 2a. the training set is used to
directly update the parameters of the model being trained. the validation set, usually
around 10% of the available data, is used to monitor training, select hyperparameters
and prevent the model overfitting to the training data. Often k-​fold cross-​validation is
used: the training set is split into k evenly sized partitions (for example, five or ten) to
form k different training and validation sets, and the performance is compared across
each partition to select the best hyperparameters. the test set, sometimes called
the ‘hold-​out set’, typically also around 10% of the available data, is used to assess the
performance of the model on data not used for training or validation (that is, estimate
its expected real-​world performance). the test set should be used only once, at the
very end of the study, or as infrequently as possible27,38 to avoid tuning the model to
fit the test set. see the section Data leakage for issues to consider when making a fair
test set.

the next step is model selection, which depends on the nature of the data and the
prediction task, and is summarized in Fig. 1. the training set is used to train the model
following best practices of the software framework being used. Most methods have a
handful of hyperparameters that need to be tuned to achieve the best performance.
this can be done using random search or grid search, and can be combined with k-​fold
cross-​validation as outlined above27. Model ensembling should be considered, where the
outputs of a number of similar models are simply averaged to give a relatively reliable
way to boost overall accuracy of the modelling task. Finally, the accuracy of the model
on the test set (see above) should be assessed.

Nature Reviews | Molecular Cell Biology

R e v i e w s

0123456789();:

sometimes called ‘traditional machine learning’. Figure 3
shows some of the methods of traditional machine
learning. Various software packages can be used to train
such models, including scikit-​learn in Python18, caret in
R19 and MLJ in Julia20.

When one is developing machine learning methods
for use with biological data, traditional machine learning
should generally be seen as the first area to explore in
finding the most appropriate method for a given task.
Deep learning can be a powerful tool, and is undeniably
trendy currently. However, it is still limited in the appli-
cation areas in which it excels: when large amounts of
data are available (for example, millions of data points);
when each data point has many features; and when the
features are highly structured (the features have clear
relationships with one another, such as adjacent pixels
in images)21. Data such as DNA, RNA and protein
sequences22,23 and microscopy images24,25 are examples of
biological data where these requirements can be met and
deep learning has been successfully applied. However,
the requirement for large amounts of data can make
deep learning a poor choice even when the other two
requirements are met.

Traditional methods, in comparison to deep learn-
ing, are much faster to develop and test on a given
problem. Developing the architecture of a deep neural
network and then training it can be a time-consuming
and computationally expensive task to undertake26 com-
pared with traditional models such as support vector
machines (SVMs) and random forests27. Although some
approaches exist, with deep neural networks it is still
not trivial to estimate feature importance28 (that is, how
important each feature is for contributing to the predic-
tion) or the confidence of predictions of the model1,28,29,
both of which are often essential in biological settings.
Even if deep learning appears technically feasible for

a particular biological prediction task, it is often still pru-
dent to train a traditional method to compare it against
a neural network-​based model, if possible30.

Traditional methods typically expect that each exam-
ple in the dataset has the same number of features, so this
is not always possible. An obvious biological example of
this is when protein, RNA or DNA sequences are being
used and each example has a different length. To use tra-
ditional methods with these data, the data can be altered
so they are all the same size using simple techniques such
as padding and windowing. ‘Padding’ means taking
each example and adding additional values containing
zero until it is the same size as the largest example in
the dataset. By contrast, windowing shortens individual
examples to a given size (for example, using only the
first 100 residues of each protein in a dataset of protein
sequences with lengths ranging from 100 upwards).

Use of classification and regression models. For regres-
sion problems such as those shown in Fig. 3a, ridge
regression (linear regression with a regularization term)
is often a good starting point for developing a model, as
it can provide a fast and well-​understood benchmark for
a given task. Other variants of linear regression such as
LASSO regression31 and elastic net regression32 are also
worth considering when there is a desire for a model to
rely on a minimal number of features within the available
data. Unfortunately, the relationships between features in
the data are often non-​linear, and so use of a model such
as an SVM is often a more appropriate choice for these
cases33. SVMs are a powerful type of regression and clas-
sification model that uses kernel functions to transform a
non-​separable problem into a separable problem that is
easier to solve. SVMs can be used to perform both linear
regression and non-​linear regression depending on the
kernel function used34–37. A good approach to developing

Define task Obtain data Select model

Sufficient data? Get more data

Small, fixed number of
features or no data labels

Predicting
class or value?

Support vector machine/
random forest/gradient boosting

Multilayer
perceptron

Labelled data?

Connections between
entities?

Graph
convolutional
network

Clustering

Dimensionality
reduction

Regression
methods

Train TuneForm test set
(if supervised)

Test
(if supervised)

Yes

Yes

YesNo

Spatial or
image data?

No Class

NoYes

2D/3D
convolutional
neural network

Yes

Sequential
data?

No

Recurrent neural
network/1D
convolutional
neural network

Yes

No

No

Value

Just visualizing

Fig. 1 | choosing and training a machine learning method. The overall procedure for training a machine learning
method is shown along the top. A decision tree to assist researchers in selecting a model is given below. This flowchart
is intended to be used as a visual guide linking the concepts outlined in this Review. However, a simple overview such as
this cannot cover every case. For example, the number of data points required for machine learning to become applicable
depends on the number of features available for each data point, with more features requiring more data points, and
also depends on the model being used. There are also deep learning models that work on unlabelled data.

Linear regression
A model that assumes that
the output can be calculated
from a linear combination
of inputs; that is, each input
feature is multiplied by a
single parameter and these
values are added. It is easy
to interpret how these models
make their predictions.

Kernel functions
Transformations applied to
each data point to map the
original points into a space in
which they become separable
with respect to their class.

Non-​linear regression
A model where the output is
calculated from a non-​linear
combination of inputs; that is,
the input features can be
combined during prediction
using operations such as
multiplication. These models
can describe more complex
phenomena than linear
regression.

www.nature.com/nrm

R e v i e w s

https://scikit-learn.org/stable
https://topepo.github.io/caret
https://alan-turing-institute.github.io/MLJ.jl/stable

0123456789();:

a model is to train a linear SVM and an SVM with a
radial basis function kernel (a general-​purpose non-​
linear type of SVM) to quantify what gain, if any, can
be had from a non-​linear model. Non-​linear approaches
can provide more powerful models but at the cost of
easy interpretation of which features are influencing the
model, a trade-​off mentioned in the introduction.

Many of the models that are commonly used in
regression are also used for classification. Training a
linear SVM and an SVM with a radial basis function
kernel is also a good default starting point for a classifi
cation task. An additional method that can be tried is
k nearest neighbours classification38. Being one of the
simplest classification methods, k nearest neighbours
classification provides a useful baseline performance
marker against which other more complex models, such
as SVMs, can be compared. Another class of robust
non-​linear methods is ensemble-​based models such as
random forests39 and XGBoost40,41. Both methods are
powerful non-​linear models that have the added bene-
fits of providing feature importance estimates and often
requiring minimal hyperparameter tuning. Due to the
assignment of feature importance values and the deci-
sion tree structure, these models are a good choice if
understanding which features contributed the most to a
prediction is essential for biological understanding.

For both classification and regression, the many
available models tend to have a bewildering variety of
flavours and variants. Trying to predict how well suited a

particular method will be to a particular problem a priori
can be deceptive, and instead taking an empirical,
trial-​and-​error approach to finding the best model is
generally the most prudent approach. With modern
machine learning suites such as scikit-​learn18, changing
between these model variants often requires changing
just one line of code, so a good overall strategy for select-
ing the best method is to train and optimize a variety
of the aforementioned methods and choose the one with
the best performance on the validation set before finally
comparing their performance on a separate test set.

Use of clustering models. The use of clustering algo-
rithms (Fig. 3e) is pervasive within biology42,43. k-​means is
a strong general purpose approach to clustering that, like
many other clustering algorithms, requires the number
of clusters to be set as a hyperparameter44. DBSCAN is
an alternative method that does not require the number
of clusters to be predefined, but has the trade-​off that
other hyperparameters have to be set45. Dimensionality
reduction can also be performed before clustering to
improve performance for datasets with a large number
of features.

Dimensionality reduction. Dimensionality reduction
techniques are used to transform data with a large
number of attributes (or dimensions) into a lower-​
dimensional form while preserving the different rela-
tionships between the data points as much as possible.

Used to train
model

a

d e f

Used to assess
performance

b One-hot encoding c Continuous encoding

Training

Validation

k-fold cross-validation Category Encoding RGB valuesPixel Encoding

Testing

Helix

Sheet

Coil

(1.0, 0.0, 0.0)
(0.00, 0.57, 1.00)

(0.96, 0.42, 1.00)

(0.0, 1.0, 0.0)

(0.0, 0.0, 1.0)

Validation set

Training set

Time

Lo
ss

Lo
ss

Training time

Too low

Too high

Good

Learning rate Early stopping

Underfit Good fit Overfit

Data point

Model

Fig. 2 | Training machine learning methods. a | Available data are often
split into training, validation and test sets. The training set is directly used
to train the model, the validation set is used to monitor training and the test
set is used to assess the performance of the model. k-​fold cross-​validation
with a test set can also be used. b | One-​hot encoding is a common approach
for representing categorical inputs where a single choice is permitted from
a number of possibilities, in this case three possible protein secondary
structure classes. The result of the encoding is a vector with three numbers,
all equal to 0 except the occupied class, which is set to 1. This vector is used
by the machine learning model. c | Continuous encoding represents
numerical inputs, in this case the red, green and blue (RGB) values of a pixel
in an image. Again the result is a vector with three numbers, corresponding
to the amount of red, green and blue in the pixel. d | Failing to learn the
underlying relationship between the variables is called ‘underfitting’,

whereas learning the noise in the training data is called ‘overfitting’.
Underfitting can be caused by using a model without sufficient complexity
to describe the signal. Overfitting can be caused by using a model with too
many parameters or by continuing training after it has learned the true
relationship between the variables. e | The learning rate of the model
determines how quickly learned parameters are adjusted when training a
neural network or some traditional methods such as gradient boosting.
A low learning rate can lead to slow training, which is time-​consuming and
requires considerable computing power. By contrast, a high learning rate
can lead to quick convergence on a non-​optimal solution and poor
performance of the model. f | Early stopping is the process of terminating
training at the point where the loss function on the validation set starts to
increase, even if the loss function on the training set is still decreasing. Use
of early stopping can prevent overfitting.

k nearest neighbours
A classification approach
where a data point is classified
on the basis of the known
(ground truth) classes of the k
most similar points in the
training set using a majority
voting rule. k is a parameter
that can be tuned. Can also
be used for regression by
averaging the property value
over the k nearest neighbours.

Nature Reviews | Molecular Cell Biology

R e v i e w s

0123456789();:

Table 1 | comparison of different machine learning methods

Method Type of data example applications advantages Disadvantages

Ridge (and
LASSO/elastic)
regression

Labelled

Fixed number of features

Protein-variant effect
prediction122

Chemical/biochemical
reaction kinetics123

Easy to interpret

Easy to train

Good benchmark

Cannot learn complex feature
relationships

Overfits with a large number
of features

Support vector
machine

Labelled

Fixed number of features

Protein function
prediction124

Transmembrane-protein
topology prediction125

Can perform both linear and
non-​linear classification and
regression

Scaling to large datasets
is often difficult

Random forest Labelled

Fixed number of features

Prediction of
disease-​associated genome
mutations126

Scoring of protein–ligand
interactions39

Learns how important each
feature is to the prediction

Individual decision trees are
human readable, allowing
interpretation of how a decision
is made

Less sensitive to feature scaling
and normalization so easier to
train and tune

Less appropriate for regression

Many decision trees are hard
to interpret

Gradient
boosting (for
example,
XGBoost)

Labelled

Fixed number of features

Gene expression profiling127 Learns how important each
feature is to the prediction

Decision trees are
human-​readable, allowing
interpretation of how a decision
is made

Less sensitive to feature scaling
and normalization so easier to
train and tune

Can struggle to learn underlying
signal if noise is present

Less appropriate for regression

Clustering Unlabelled

Fixed number of features

Differential gene expression
analysis15

Model selection in protein
structure prediction128

For low-​dimensional data, good
clustering is easily identifiable

Cluster validation metrics are
available to assess performance

Scaling to large datasets is
difficult for some methods

Noisy datasets sometimes yield
contradictory results

Dimensionality
reduction

Unlabelled

Large and fixed number of
features

Single-​cell transcriptomics49

Analysis of
molecular-dynamics
trajectories129

Provides visual representation
of data

Goodness-​of-​fit evaluations
usually available to assess
performance

Hard to preserve both global
and local differences in data

Scaling to large numbers of
samples is difficult for some
methods

Multilayer
perceptron

Labelled

Fixed number of features

Protein secondary structure
prediction13

Drug toxicity prediction54

Can fit datasets with fewer
layers than architectures such as
convolutional neural networks,
making it easier and faster to
train

Easy to overfit

Large number of parameters

Hard to interpret

Convolutional
neural network

Spatial data arranged
in a grid; for example,
2D image (pixels) or
3D volumes (voxels)

Allows variable input size

Protein residue–residue
contact and distance
prediction23

Medical image recognition24

Variable input size

Learns patterns irrespective
of location in input

Receptive field, the amount
of the input that is considered
when predicting the output for
each pixel, can be limited

Hard to train deeper
architectures that use many
layers to increase the receptive
field and make more complex
predictions

Recurrent
neural network

Sequential data
(for example, biological
sequences or time-​series
data)

Allows variable input size

Protein engineering68

Predicting clinical events66

Variable input size

Sequences are found in many
areas of biology

Long training times

High computing memory
requirements

Graph
convolutional
network

Data characterized by
connections between
entities (spatial,
interaction or association)

Allows variable input size

Predicting drug properties77

Interpreting molecular
structures73,74

Knowledge extraction130

Variable graph sizes supported,
which is important because most
graphs in biology have variable
size

Learns patterns by following
graph connectivity so predictor
uses most relevant associations

High computing memory
requirements for large,
densely connected graphs

Hard to train deeper
architectures

www.nature.com/nrm

R e v i e w s

0123456789();:

For example, data points that are similar (for example,
two homologous protein sequences) should also be sim-
ilar in their lower-​dimensional form, whereas dissimilar
data points (for example, unrelated protein sequences)
should remain dissimilar46,47. Two or three dimensions
are often chosen to allow visualization of the data on a
set of axes, although larger numbers of dimensions have
uses in machine learning too. These techniques com-
prise both linear and non-​linear transformations of the
data. Examples common in biology include principal
component analysis (PCA) as shown in Fig. 3d, Uniform
Manifold Approximation and Projection (UMAP) and
t-​distributed stochastic neighbour embedding (t-​SNE)48.
The technique to use depends on the situation: PCA
retains global relationships between data points and is
interpretable because each component is a linear combi-
nation of input features, meaning it is easy to understand
which features give rise to variety in the data. t-​SNE
more strongly preserves local relationships between data
points and is a flexible method that can reveal structure
in complex datasets. Applications include single-​cell
transcriptomics for t-​SNE49 and molecular dynamics
trajectory analysis for principal component analysis.

Artificial neural networks
Artificial neural network models get their name from
the fact that the form of the mathematical model that is
being fit is inspired by the connectivity and behaviour of
neurons in the brain and was originally designed to learn
about brain function50. However, the neural networks
in common use in data science are obsolete as brain
models, and are now just machine learning models that
can offer state-​of-​the-​art performance in certain appli-
cations. Interest in neural network models has grown
in recent decades owing to rapid advances in the archi-
tectures and training of deep neural networks26. In this
section, we describe basic neural networks, as well as
varieties that are widely used in biological studies. Some
of these are shown in Fig. 4.

Basic principles of neural networks. A key property
of neural networks is that they are universal func-
tion approximators, which means that, with very few
assumptions, a correctly configured neural network can
approximate any mathematical function to an arbitrary
level of accuracy. In other words, if any process (biolo
gical or otherwise) can be thought of as some function
of a set of variables, then that process can be modelled
to any arbitrary degree of accuracy, governed by just the
size or complexity of the model. The above definition of
universal approximation is not mathematically rigorous,

but does highlight one reason why interest in neural net-
works has persisted for decades. However, this guarantee
does not provide a way of finding the optimal parame-
ters of a neural network model that will produce the best
approximation for a given dataset. There is also no guar-
antee that the model will provide accurate predictions
for new data51.

Artificial neurons are the building blocks of all neural
network models. An artificial neuron is simply a mathe-
matical function that maps (converts) inputs to outputs in
a specific way. A single artificial neuron takes in any num-
ber of input values, applies a specific mathematical func-
tion to them and returns an output value. The function
used is usually represented as

∑y σ w x b= () + , (1)
i

n

i i
=1











where xi represents a single input variable or feature
(there are n such inputs), wi represents a learnable weight
for that input, b represents a learnable bias term and
σ represents a non-​linear activation function that takes
a single input and returns a single output. To create a
network, artificial neurons are arranged in layers, with
the output of one layer being the input to the next. The
nodes of the network can be thought of as holding the y
values from the above equation, which become the x val-
ues for the next layer. We describe various approaches
for arranging artificial neurons in the following subsec-
tions, which are called ‘neural network architectures’. It is
also common to combine the different architecture types;
for example, in a convolutional neural network
(CNN) used for classification, fully connected layers are
usually used to produce the final classification output.

Multilayer perceptrons. The most basic layout of a neu-
ral network model is that of layers of artificial neurons
arranged in a fully connected fashion, as shown in Fig. 4a.
In this layout, a fixed number of ‘input neurons’ represent
the input feature values calculated from the data that are
fed to the network, and each connection between a pair
of neurons represents one trainable weight parameter.
These weights are the main adjustable parameters in a
neural network, and optimizing these weights is what
is meant by neural network training. At the other end
of the network, a number of output neurons represent
the final output values from the network. Such a net-
work, when correctly configured, can be used to make
complex, hierarchical decisions about the input, as each
neuron in a given layer receives inputs from all neurons
in the previous layer. Layers of neurons in this simple

Method Type of data example applications advantages Disadvantages

Autoencoders Labelled or unlabelled
data

Fixed or variable input size
depending on architecture

Protein and gene
engineering82

Prediction of DNA
methylation81

Neural population
dynamics131

Latent space provides
low-​dimensional representation
that can be used to visualize
input data

Can generate new samples,
which is useful in areas such
as protein design

Latent space specific to data
in training set and may not be
appropriate to other datasets

Testing newly generated
samples often requires wet
laboratory experiments

Each method has types of data and applications to which it is best suited, along with advantages and disadvantages when compared with other methods.

Table 1 (cont.) | comparison of different machine learning methods

Nature Reviews | Molecular Cell Biology

R e v i e w s

0123456789();:

arrangement are often called ‘multilayer perceptrons’
and were the first networks useful for bioinformatics
applications52,53. They are still widely used in a number of
biological modelling applications today due to their ease
and speed of training13,54. In many other applications,
however, these simple architectures have been surpassed
by newer model architectures discussed below, although
some of these newer architectures still often make use of
fully connected layers as subcomponents.

Convolutional neural networks. CNNs are ideally suited
for image-​like data, where the data possess some type of
local structure, and where the recognition of such struc-
ture is a key objective of the analysis. With the example
of images, this local structure could relate to specific
types of objects in a field of view (for example, cells in
a microscopy image), represented by specific local pat-
terns of colours and/or edges in spatially close pixels in
an input image.

CNNs are composed of one or more convolutional
layers (see Fig. 4b), in which the output is the result of
applying a small, one-​layer fully connected neural net-
work, called a ‘filter’ or ‘kernel’, to local groups of fea-
tures in the input. In the case of image-​like inputs, this

local area would be a small patch of pixels in the image.
The outputs of a convolutional layer are also image-​like
arrays, carrying the result of ‘sliding’ the filter over the
entire input and computing an output at each position.
Crucially, the same filter is used across all pixels, allow-
ing the filters to learn local structure in the input data.
It is common in deeper CNNs to use skip connections
that allow the input signal to bypass one or more layers
in addition to passing through the processing units in
the layer. This type of network is called a ‘residual net-
work’ and allows training to converge more quickly on
accurate solutions.

CNNs can be configured to operate effectively on
data of different spatial structure. For example, a 1D
CNN would have filters that slide in just one direction
(say from left to right); this type of CNN would be suit-
able for data that have only one spatial dimension (such
as text or biological sequences). 2D CNNs operate on
data with two spatial dimensions, such as digital images.
3D CNNs operate on volumetric data, such as magnetic
resonance imaging scans.

CNNs have seen significant success in biology for
a variety of data types. Recent advances in protein
structure prediction have used information on the

Features

Separa
tin

g hyperp
lane

Margin

b SVM

d PCA e Clustering

c Gradient boostinga Regression

W
ei

gh
t

Height

W
ei

gh
t

Height

G
en

e
2

ex
pr

es
si

on

Gene 1 expression

Ordered
protein

Disordered
protein

Drug property 1

D
ru

g
pr

op
er

ty
 2

Active
Inactive

PC1

PC2

Cell types

Data point
Model

Fig. 3 | Traditional machine learning methods. a | Regression finds the relationship between a dependent variable (the
observed property) and one or more independent variables (features); for example, predicting the weight of a person from
the person’s height. b | A support vector machine (SVM) transforms the original input data such that in their transformed
versions (called the ‘latent representation’) data belonging to separate categories are divided by a clear gap that is made as
wide as possible. In this case we show a prediction of whether a protein is ordered or disordered, with the axes representing
dimensions of the transformed data. c | Gradient boosting uses an ensemble of weak prediction models, typically decision
trees, to make predictions. For example, active drugs can be predicted from molecular descriptors such as molecular
weight and the presence of particular chemical groups. Individual predictors are combined in a stage-​wise manner to
make the final prediction. d | Principal component analysis (PCA) finds a series of feature combinations that best describe
the data while being orthogonal to each other. It is commonly used for dimensionality reduction. In the case of the height
and weight of a person, the first principal component (PC1), corresponding to a linear combination of height and weight,
describes the strong positive correlation, whereas PC2 might describe other variables that do not correlate strongly with
those, such as percentage body fat or muscle mass. e | Clustering uses one of various algorithms to group sets of similar
objects (for example, grouping cell types on the basis of gene expression profiles).

www.nature.com/nrm

R e v i e w s

0123456789();:

co-​evolution of residue pairs in related protein sequences
to extract information on residue pair contacts and dis-
tances, allowing predictions of 3D protein structures to
be built at unprecedented accuracy23,55. In this case, the
network learns to pick out direct coupling interactions,
and accurate predictions can be made even for sequences
with few or no related sequences56. CNNs have also
been applied successfully to identify variants in genetic
sequence data57, 3D genome folding58, DNA–protein
interactions22,59, cryogenic electron microscopy image
analysis60,61 and image classification in medically impor-
tant contexts (such as detection of malignancy), where
they often now rival expert human performance24,62.

Recurrent neural networks. RNNs are most suited to
data that are in the form of ordered sequences, such that
there exists (at least notionally) some dependence or
correlation between one point in the sequence and the
next. Probably their main application outside biology is
in natural language processing, where text is treated as
a sequence of words or characters. As shown in Fig. 4c,

RNNs can be thought of as a block of neural network
layers that take as input the data corresponding to each
entry (or time step) in a sequence and produce an output
for each entry that is dependent on entries that have pre-
viously been processed. They can also be used to gener-
ate a representation of the whole sequence that is passed
to later layers of the network to generate the output. This
is useful as sequences of any length can be converted
to a fixed-​size representation and input to a multilayer
perceptron. Obvious examples for the use of RNNs in
biology include analysis of gene or protein sequences,
with tasks including identifying promoter regions from
gene sequences, predicting protein secondary structure
or modelling gene expression levels over time; in the
last case, the value at a given time point would count as
one entry in a sequence. The more advanced long short-​
term memory or gated recurrent unit variants of RNNs
have many uses in biology, including protein structure
prediction63,64, peptide design65 and predicting clinical
diagnosis from health records66. These more advanced
methods are often used in combination with CNNs,

a Multilayer perceptron b Convolutional neural network c Recurrent neural network

e Autoencoderd Graph convolutional network

Molecular
properties

Toxicity
prediction

Output

Hidden layers

Input

Filter

Next layer

Microscopy
image

Input

Hidden state

Output

A C T C

0.4 0.8 0.7 0.3

DNA sequence

Transcription factor binding

R

G

A

D

I

R

G

A

E

I

Encoderneural network
Decoder

neural network

Latent
representation

Protein
sequence

Protein
sequence

Protein

Protein–protein
interaction

Updated node
features

Layer Next layer

Fig. 4 | Neural network methods. a | A multilayer perceptron consists of nodes (shown as circles) that represent
numbers: an input value, an output value or an internal (hidden) value. Nodes are arranged in layers with connections,
indicating learned parameters, between every node of a layer and every node of the next layer. For example, molecular
properties can be used to predict drug toxicity as the prediction can be made from some complicated combination of
independent input features. b | A convolutional neural network (CNN) uses filters that move across the input layer and
are used to calculate the values in the next layer. The filters operating across the whole layer mean that parameters are
shared, allowing similar entities to be detected regardless of location. A 2D CNN is shown operating on a microscopy
image, but 1D and 3D CNNs also find applications in biology. The dimensionality in this case refers to how many spatial
dimensions there are in the data, and the connectivity within the CNNs can be configured accordingly. For example,
biological sequences can be considered 1D and magnetic resonance imaging data can be considered 3D. c | A recurrent
neural network (RNN) processes each part of a sequential input using the same learned parameters, giving an output
and an updated hidden state for every input. The hidden state is used to carry information about the preceding parts
of the sequence. In this case the probability of transcription factor binding is predicted for each base in a DNA sequence.
The RNN is expanded to show how each output is generated using the same layers; this should not be confused with
using different layers for each output. d | A graph convolutional network uses information from connected nodes in a
graph, such as a protein–protein interaction network, to update node properties in the network by combining predictions
from all neighbouring nodes. The updated node properties form the next layer in the network and predict the desired
property in the output layer. e | An autoencoder consists of an encoder neural network, which converts an input into
a lower-​dimensional latent representation, and a decoder neural network, which converts this latent representation
back to the original input form. For example, protein sequences can be encoded and the latent representation used to
generate novel protein sequences. In the example, four of the five residues are the same as the input after encoding and
decoding by the autoencoder, indicating an accuracy of 80% on this sequence.

Nature Reviews | Molecular Cell Biology

R e v i e w s

0123456789();:

which can increase accuracy67. RNNs can be very robust
in analysing sequence-​based data. For example, RNNs
trained on millions of protein sequences have shown an
ability to capture evolutionary and structural informa-
tion, and can be applied to a variety of supervised tasks,
including tasks related to the design of novel protein
sequences68.

Role of attention mechanisms and the use of trans-
formers. A problem identified with RNNs is the diffi-
culty they have in examining specific parts of an input
sequence, which is important in order to generate
a highly accurate output. The addition of an atten-
tion mechanism to RNNs, which allows the model to
access all parts of the input sequence when calculating
each output, was introduced to alleviate this problem.
Recently it was shown that the RNN is not even required
at all, and that attention alone can be used by itself; the
resulting models, called ‘transformers’, have obtained
state-​of-​the-​art results on many natural language pro-
cessing benchmarks69. Transformer models have recently
shown greater accuracy than RNNs for tasks on bio-
logical sequences, but it remains to be seen whether
these methods, which are often trained on billions of
sequences using thousands of graphics processing units,
will be able to outperform existing alignment-​based
methods of sequence analysis in bioinformatics70. The
outstanding success of AlphaFold2 in the 14th Critical
Assessment of Protein Structure Prediction (CASP14)
experiment, a blind assessment of computational
approaches to predict protein structure from sequence,
suggests that models using attention also hold promise
for tasks in structural biology71.

Graph convolutional networks. Graph convolutional
networks are particularly suitable for data that, while
not having any obvious visible structure like an image,
are nonetheless composed of entities connected by arbi-
trary specified relationships, or interactions72. Examples
of such data relevant to biology include molecules (com-
posed of atoms and bonds)73–76 and protein–protein
interaction networks (composed of proteins and inter-
actions)77. A graph, in computational terms, is just a rep-
resentation of such data, with each graph having a set of
vertices or nodes, and a set of edges that represent vari
ous types of relationships or connections between the
nodes. With use of the examples given above, represen
tations of atoms or proteins might be classed as node
features, and bonds or interactions might be classed as
edge features. Graph convolutional networks use the
structure of the resulting graph to determine the flow
of information in the neural network model. As shown
in Fig. 4d, adjacent nodes are considered when the fea-
tures of each node are updated throughout the network,
with the node features in the last layer being used as the
output (for example, interacting residues on a protein)
or combined to form an output for the whole graph (for
example, fold type of the protein). Graphs representing
different associations can combine different sources of
information when making predictions, such as com-
bining drug–gene and food–gene relationship graphs
to predict foods for cancer prevention78. Software for

training graph convolutional networks includes PyTorch
Geometric79 and Graph Nets72.

Autoencoders. As the name suggests, autoencoders are
neural network architectures designed to self-​encode
(autoencode) a collection of data points by represent-
ing them as points in a new space of predetermined
dimensionality, usually far fewer than the number of
input dimensions. One neural network (the encoder) is
trained to convert the input into a compact internal rep-
resentation, called a ‘latent vector’ or ‘latent representa-
tion’, representing a single point in the new space. The
second part of an autoencoder, called the ‘decoder’, takes
the latent vector as input and is trained to produce as
output the original data with the original dimensional-
ity (Fig. 4e). Another way of looking at this is that the
encoder tries to compress the input, and the decoder
tries to decompress it. The encoder, latent representation
and decoder are trained at the same time. Although this
sounds like a pointless exercise, where the output just
mimics the input, the idea is to learn a new representa-
tion of the input data that compactly encodes desirable
features, such as similarity between the data points, while
still retaining the ability to reconstruct the original data
using the learned latent representation. Applications
include predicting how closely related two data points
are and enforcing some structure on the latent space that
is useful for further prediction tasks. Another benefit
of the encoder–decoder architecture is that, once trained,
the decoder can be used in isolation to generate pre-
dictions of new, synthetic data samples which can be
tested in the laboratory and contribute to synthetic
biology efforts80. Autoencoders have been applied to a
range of biological problems, including predicting DNA
methylation state81, the engineering of gene and protein
sequences82,83 and single-​cell RNA-​sequencing analysis84.

Training and improving neural networks. The general
procedure for training machine learning models is out-
lined in Box 1. However, as neural networks are struc-
turally much more complex than the traditional machine
learning algorithms, there are some concerns that are
specific to neural networks. Having picked a neural net-
work as an appropriate model for the intended appli-
cation (Fig. 1), it is often a good idea to train it on just
a single training example (for example, a single image
or gene sequence). This trained model is not useful for
making predictions, but the training is good at revealing
programming errors. The training loss function should
very quickly go to zero as the network simply memorizes
the input; if it does not, there is likely an error in the
code, or the algorithm is not complex enough to model
the input data. Once the network has passed this basic
debugging test, training on the whole training set can
proceed, where the training loss function is minimized.
This may require tuning of hyperparameters such as the
learning rate (Fig. 2e). By monitoring loss on the train-
ing and validation sets, overfitting of the network can
be detected where the training loss continues to drop
lower and the loss on the validation set starts to increase.
Training is usually stopped at that point, a process
known as early stopping (Fig. 2f). Overfitting of a neural

www.nature.com/nrm

R e v i e w s

https://pytorch-geometric.readthedocs.io/en/latest
https://pytorch-geometric.readthedocs.io/en/latest
https://github.com/deepmind/graph_nets

0123456789();:

network (or any machine learning model), visualized in
Fig. 2d, means that the model is starting to simply mem-
orize features of the training set and thus starting to lose
its ability to generalize to new data. Early stopping is a
good way of preventing this, but other techniques can be
used during training, such as regularization of the model
or dropout techniques, where nodes in the network are
randomly ignored to force the network to learn a more
robust prediction strategy involving multiple nodes.

Popular software packages used to train neural net-
works include PyTorch85 and Tensorflow86. Training
neural networks is computationally demanding, usually
requiring a graphics processing unit or tensor processing
unit with sufficient memory, as these devices can pro-
vide a 10 to 100 times speedup over use of the standard
central processing unit. This speedup is required when
training the larger models that have shown success in
recent years, and when training is performed on large
datasets. However, running an already trained model is
usually considerably faster and is often feasible on just an
ordinary central processing unit. Cloud computing solu-
tions from common providers exist for those without
access to a graphics processing unit for training, and it is
worth noting that for small tasks, Colaboratory (Colab)
allows Python code to be tested on either graphics pro-
cessing units or tensor processing units free of charge.
Using Colab is an excellent way of getting started with
Python-​based deep learning.

Challenges for biological applications
Perhaps the single biggest challenge of modelling biologi
cal data is the sheer variety1. Biologists work with data
such as gene and protein sequences, gene expression
levels over time, evolutionary trees, microscopy images,
3D structures and interaction networks, to name but
a few. We have summarized some best practices and
important considerations for specific biological data
types in Table 2. Owing to the diversity of data types
encountered, biological data often require somewhat
bespoke solutions for handling them effectively, and this
makes it difficult to recommend off-​the-​shelf tools or
even general guidelines for the use of machine learning
in these problem domains, as the choice of model, train-
ing procedure and test data will depend heavily on the
exact questions one wants to answer. Nevertheless, there
are some common issues that need to be considered for
the successful use of machine learning in biology, but also
more generally.

Data availability. Biology is somewhat unique in that
there exist some problem domains that have very large
quantities of data publicly available, whereas other prob-
lem domains have very small quantities. An example is
the relative abundance of biological sequence data in
public databases such as GenBank and UniProt, whereas
reliable data on protein interactions are much harder to
come by. The quantity of data available for a given prob-
lem has a profound impact on the choice of techniques
that can effectively be used. As a very rough guideline,
when only small amounts of data (hundreds of or a few
thousand examples) are available, one is essentially forced
to use more traditional machine learning methods, as

these are more likely to produce robust predictions. When
larger quantities are available, one can start to consider
more highly parameterized models such as deep neural
networks. In supervised machine learning, the relative
proportions of each ground truth label in the dataset
should also be considered, with more data required
for machine learning to work if some labels are rare87.

Data leakage. Although the scale and complexity of
biological data may make them seem ideal for machine
learning, there are some important considerations that
need to be borne in mind21,88,89. One key concern is
how to validate the performance of a model. The com-
mon setup of training, validation and test sets can lead
to problems such as researchers repeatedly testing on
the same test set with a variety of models to obtain the
greatest accuracy, and hence risking overestimating per-
formance on it without generalizing to other test sets
or new data. However, biological data present a further
non-​trivial question: in a large dataset with related
entries (for example, as a result of familial relationships,
or evolutionary relationships), how does one ensure that
two closely related entries do not end up split between
the training set and the test set? If this occurs, then the
ability of the model to remember specific cases is tested,
rather than its ability to predict the property in question.
This is one example of an issue often called ‘data leak-
age’ and leads to results that appear better than they are,
which is perhaps one reason researchers are reluctant to
be rigorous about the issue. Other types of data leakage
are possible (for example, using any data or features dur-
ing training that would not be available during testing).
Here we focus on the problem of having related samples
in the training and testing sets.

What we mean by ‘related’ here depends on the nature
of the study. It might be a case of sampling data from the
same patient or the same organism. However, the classic
situation where data leakage occurs in biology is seen in
studies on protein sequences and structures. Typically,
but usually not correctly, researchers try to ensure that
no protein in the training set has sequence identity above
a certain threshold to any protein in the test set, usually
at a threshold of 30% or 25%. This is enough to exclude
many homologous pairs of proteins, but it has been
known for decades that some homologous proteins can
have virtually no sequence similarity90,91, which would
mean that simply filtering by sequence identity would be
insufficient to prevent data leakage. This is particularly
important for models that operate on sequence align-
ments or sequence profiles as input, as although two
individual protein sequences may not share any obvi-
ous similarity, their profiles could be virtually identical.
This means that for a machine learning model, these
two profiles would essentially be the same data point —
both will be describing the same protein family. For pro-
tein sequences, one solution to avoid this problem is to
search the test data with a sensitive hidden Markov model
profile comparison tool such as HH-​suite, which can
find sequences distantly related to the training data92.
In the common case where protein structure is being
used as input or output, structural classifications such as
CATH93 or ECOD94 can be used to exclude similar folds

Regularization
Restricting the values of
parameters to prevent the
model from overfitting to
the training data. For example,
penalizing high parameter
values in regression models
reduces the flexibility of the
model and can stop it fitting
to noise in the training data.

Cloud computing
On-​demand computing
services, including processing
power and data storage,
typically available via the
Internet. A pay-​as-​you-​go
model is usually used. Use
of cloud computing minimizes
up-​front IT infrastructure costs.

Hidden Markov model
A statistical model that can be
used to describe the evolution
of observable events that
depend on factors that are
not directly observable.
It has various uses in biology,
including representing protein
sequence families.

Nature Reviews | Molecular Cell Biology

R e v i e w s

https://pytorch.org
https://www.tensorflow.org
https://research.google.com/colaboratory

0123456789();:

or homologous proteins. Similar issues affect studies
predicting protein–ligand binding affinity95.

To be clear, data leakage is not an intrinsic issue with
any particular type of data, but rather it is a problem
with how the data are used when training and evaluating
machine learning models. One would certainly expect a
trained model to produce very good results on data that
are similar to the training set. The issue of data leakage
becomes a problem when a model that appears accurate
on some benchmark set performs poorly on new data
that are actually different from the training set; in other
words, the model does not generalize, likely because
it has not modelled the true relationship between the
variables, but rather remembered hidden associations
present in the data.

Because of frequent complaints from reviewers,
some journals are now starting to require rigorous

benchmarking to be performed before a paper can be
considered for publication. Without proper testing, the
performance of a model will very likely not be represent-
ative of real-​world performance on unseen data, which
undermines user confidence in the model. Worse, authors
of future studies may be misled into thinking that inad-
equate testing is defensible simply because it has already
appeared in (possibly several) peer-​reviewed articles,
even though it is not. As mentioned in Box 2, authors,
peer reviewers and journal editors all have a responsi-
bility for ensuring that data leakage has been avoided.
Knowingly leaving these kinds of errors in place is really
little better than fabricating data at the end of the day.

Interpretability of models. It is usually the case that bio
logists want to know why a particular model is making
a particular prediction (that is, what features of the input

Table 2 | recommendations for the use of machine learning strategies for different biological data types

input data example prediction tasks recommended models challenges

Gene sequence DNA accessibility14

3D genome organization58

Enhancer–promoter interactions40

1D CNNs

RNNs

Transformers

Repetitive regions in genome

Sparse regions of interest

Very long sequences

Protein sequence Protein structure23,55

Protein function132

Protein–protein interaction133

2D CNNs and residual networks using
co-variation data

Multilayer perceptrons with windowing

Transformers

Metagenome data stored in many places
and therefore hard to access

Data leakage (from homology) can make
validation difficult

Protein 3D
structure

Protein model refinement134

Protein model quality
assessment135

Change in stability upon mutation136

GCNs using molecular graph

3D CNNs using coordinates

Traditional methods using structural features

Clustering

Lack of data, particularly on protein
complexes

Lack of data on disordered proteins

Gene expression Intergenic interactions or
co-​expression137

Organization of transcription
machinery138

Clustering

CNNs

Autoencoders

Unclear link between co-​expression and
function

High dimensionality

High noise

Mass spectrometry Detecting peaks in spectra139

Metabolite annotation140

CNNs using spectral data

Traditional methods using derived features

Lack of standardized benchmarks141

Normalizationa required between
different datasets

Images Medical image recognition24,62

Cryo-​EM image reconstruction60,142

RNA-​sequencing profiles143

2D CNNs and residual networks

Autoencoders

Traditional methods using image features

Systematic differences in data collection
affect prediction

Hard to obtain large datasets of
consistent data

Molecular
structure

Antibiotic activity73

Drug toxicity54

Protein-​ligand docking39

Novel drug generation144

GCNs using molecular graph

Traditional methods or multilayer
perceptrons using molecular properties

RNNs using text-​based representations
of molecular structure such as SMILES

Autoencoders

Experimental data available for only a
tiny fraction of possible small molecules

Protein–protein
interaction
network

Polypharmacology side effects77

Protein function145

GCNs

Graph embedding

Interaction networks can be incomplete

Cellular location affects whether
proteins interact

High number of possible combinations

Each type of biological data has prediction tasks in which it has been used effectively, machine learning models that are appropriate and specific challenges when
using machine learning. Some challenges, such as high dimensionality, affect most biological data types. CNN, convolutional neural network; cryo-​EM, cryogenic
electron microscopy; GCN, graph convolutional network; RNN, recurrent neural network. a‘Normalization’ means rescaling or otherwise transforming variables
from different datasets with the intention that their contributions should carry roughly equal weight and their ranges are comparable on a joint scale. The most
common way of achieving this is by subtracting the means of each variable and dividing by their standard deviations, which can also be called ‘standardization’.
This is required because different instruments, experimental protocols and so on can produce systematic differences in measurements of the same quantities,
rendering it difficult or impossible to compare trends between experiments.

www.nature.com/nrm

R e v i e w s

0123456789();:

data the model is responding to and how) and why it
works in some cases but not others. In other words, bio
logists are often interested in discovering mechanisms
and the factors responsible for modelling output, rather
than just accurate modelling, as mentioned previously.
The ability to interpret a model depends on the machine
learning method used and the input data. Interpretation
is usually easier for non-​neural network methods, as
these have feature sets more amenable to direct mean-
ingful interpretation and generally have fewer learnable
parameters. In the case of, say, a simple linear regres-
sion model, the parameter assigned to each input feature
gives a direct indication of how that feature affects
the prediction.

The low cost of training non-​neural network meth-
ods means that it is advisable to perform ablation studies,
where the effect on performance of removing defined
features of the input is measured. Ablation studies can
reveal which features are most useful for the modelling
task at hand, and are one way to possibly discover more
robust, efficient and interpretable models.

Interpreting a neural network (particularly a deep
neural network) is generally much harder due to the
frequently large number of input features and param-
eters in the model. It is still possible to identify, for
example, regions in an input image most responsible
for a particular classification by building a saliency map28.
Although saliency maps show which regions of an image
are important, it can be more difficult to pinpoint which
properties of the data in these locations were responsi-
ble for the prediction, particularly when the inputs are
not easily interpretable by humans, such as images and
text. Nevertheless, saliency maps and similar representa-
tions can be useful as a ‘sanity check’ to ensure that the
model is indeed looking at the relevant parts of an image.
This can help avoid situations where models make unin-
tended connections, such as classifying medical images
on the basis of hospital or department labels in the cor-
ner of the image rather than the medical content of the
image itself96. Generating adversarial examples, synthetic
inputs that cause a neural network to produce confident
incorrect predictions, can also be a good way of pro-
viding information on which features are being most
used for prediction97. For example, CNNs often use tex-
tures (such as stripes in animal fur) to classify objects in
images, where humans would primarily use the shapes51.

Privacy-​preserving machine learning. Some biological
data, most notably human genomics data and commer-
cially sensitive pharmaceutical data, have data privacy
implications. There have been a number of efforts to
allow sharing of data and distributed training of machine
learning models in the context of data privacy. For exam-
ple, modern cryptographic techniques allow training of a
drug–target interaction model where the data and results
are provably secure98. Simulated, synthetic participants
that closely resemble real participants in a clinical trial
can lead to results that are accurate for real participants
without revealing identifying data99. Algorithms have
been developed for efficient federated model training
with data stored in different places100.

The need for interdisciplinary collaborations. Unless
publicly available data are being used, it is rare that one
research group will have the expertise and resources to
both collect data for a machine learning study and also
apply the most appropriate machine learning method
effectively. It is common for experimental biologists to
collaborate with computer scientists, with such collabo
rations often obtaining excellent results. It is, however,
important in such collaborations that each side has some
working knowledge of the other. In particular, computer
scientists should make an effort to understand the data,
such as the expected degree of noise and reproducibility,
and biologists should understand the limitations of the
machine learning algorithms being used. Building such

Saliency map
In the context of machine
learning, an image generated
to show which pixels in an
input image contribute to the
prediction made by a model.
It is useful in interpreting
models.

Box 2 | evaluating articles that use machine learning

Here are some questions to consider when reading or reviewing articles that use
machine learning on biological data. it is useful to bear these considerations in mind,
even if the answers are not apparent, and these questions can be used as the basis for
a discussion with collaborators with the required expertise. a surprising number of
articles do not fulfil these criteria148.

is the dataset adequately described?
Complete steps to assemble the dataset should be provided, ideally with the dataset
or summary data (for example, biological database iDs) available at a persistent urL.
in our experience, a thorough description of the machine learning method but with
only a cursory reference to the data is a red flag. if a standard dataset or a dataset from
another study is being used, then this should be adequately justified in the article.

is the test set valid?
Based on the discussion in the section Challenges for biological applications, check that
the test set is sufficient to benchmark the property under investigation. there should be
no data leakage between the training set and the test set, the test set should be of large
enough to give reliable results and the test set should mirror the range of examples a
standard user of the tool would be likely to use it on. the composition and size of the
training and test sets should be discussed in detail. authors have a responsibility to
ensure that all steps have been taken to avoid data leakage, and these steps should be
described in the article, along with the rationale behind them. Journal editors and peer
reviewers should also ensure that these tasks have been performed to a good standard,
and certainly should never just assume that they have been.

is the model choice justified?
reasons should be given for the choice of machine learning method. Neural networks
should be used because they are appropriate for the data and question in hand, and not
just because everyone else is using them. Discussion of models that were tried and did
not work should be encouraged as it may help others; too often a complex model is
presented without any discussion of the inevitable trial and error that will have been
required to end up with that model.

Has the method been compared with other methods?
a novel method should be compared with existing methods that show good
performance and are used in the community. ideally methods using a variety of model
types should be compared, which can aid in interpreting results. it is surprising how
many complex models can be matched in performance by simple regression methods.

are the results too good to be true?
Claims of greater than 99% accuracy are not uncommon in machine learning articles
in biology. usually, this is a sign of a problem with the testing rather than an amazing
breakthrough. Both authors and reviewers should take note of this point.

is the method available?
at the very least, someone who wants to use a trained model from an article should be
able to run a prediction using a web service or binary file. ideally, at least source code
and the trained model should be available at a persistent urL and under a common
licence149,150. also making the training code available is the ideal scenario, as this further
increases the reproducibility of the article and allows other researchers to build on the
method without essentially having to start from scratch. Journals should bear some
responsibility here to ensure that this becomes the norm.

Nature Reviews | Molecular Cell Biology

R e v i e w s

0123456789();:

understanding takes time and effort, but is important to
prevent the often unintentional dissemination of poor
models and misleading results.

Future directions
The increasing use of machine learning in biological
studies looks set to continue for the foreseeable future.
This increased uptake has been enabled by important
advances in methodology, software and hardware, all of
which keep on developing. A number of large technology
companies are using their technical expertise and con-
siderable resources to assist academic researchers or
even perform their own research in biology with innova-
tive machine learning strategies. To date, however, most
success has come from applying algorithms developed
in other fields directly to biological data. For example,
CNNs and RNNs were developed for applications such
as image analysis (for face recognition or in self-​driving
cars) and natural language processing, respectively. One
of the most exciting prospects for machine learning in
biology is algorithms tailored specifically to biological
data and biological questions101,102. If the known struc-
ture of a biological system can be exploited and neural
networks used to learn the unknown parts, then increas-
ingly heavily parameterized models can be replaced with
simpler ones that are more amenable to interpretation
and more robust on new data103. Applications include
biological reaction systems and pharmacokinetics,
where systems of known differential equations can be
used. This will also assist in the move from predictive
machine learning to generative models that can create
new entities, such as designing proteins with novel
structures and functions104,105.

As the variety of useful architectures and input data
types increases, the paradigm of differentiable program-
ming is emerging from the field of deep learning106.
Differentiable programming is the use of automatic
differentiation, the central concept in training neural net-
works, to calculate gradients and improve parameters in
any desired algorithm. This shows promise for physi-
cal models of biological systems in protein structure
prediction63,107, and for learning force field parameters
for molecular dynamics simulations108,109. The develop-
ment of differentiable software packages such as JAX110
and packages tailored to specific areas of biology such
as Selene111, Janggu112 and JAX MD113 will assist the
development of such methods.

The progress in biological data analysis with
machine learning has also been enabled by the deposi-
tion of trained models in publicly available repositories.

In this way, researchers working on similar problems
can use these models without the need for training,
and a variety of different models can be used with
only minimal effort required for switching between
them114. The field has also seen an expansion of auto-
mated machine learning pipelines, which train and tune
a variety of models without user input and return the
best performing model. These may assist non-​experts
in training models115. However, these resources cannot
replace a thorough understanding of the method being
used, which is important for choosing the appropri-
ate inductive bias and interpreting the predictions of
the model. It remains to be seen whether in the future
automated machine learning will be reliable and flexi-
ble enough to allow experimentalists to routinely use
complex machine learning algorithms independently,
or whether machine learning expertise will remain a
necessity.

As has been discussed, rigorous validation of models
and comparison of different models is challenging
but remains necessary to identify the best perform-
ing models and inform future research directions. For
the field to progress, it will be necessary to develop
benchmark datasets and validation tasks116, such as
ProteinNet117, ATOM3D118 and TAPE119, and for these
to become widely used. Of course, overoptimizing to a
particular benchmark can occur, and it is important that
researchers resist the temptation to do this to make their
results seem better. Blind assessments such as CASP120
and the Critical Assessment of Functional Annotation121
will continue to play an important role in assessing
which models perform best.

Overall, the variety of biological data makes it hard
to provide general guidelines for machine learning in
biology. Hence, we have aimed here to give biologists
an overview of the different methods available and to
provide them with some ideas about how to conduct
effective machine learning with their data. Of course,
machine learning is not suited to every problem, and
it is just as important to know when to avoid it: when
there are not sufficient data, when understanding rather
than prediction is required or when it is unclear how to
assess performance in a fair way. The boundaries of
when machine learning is useful in biology are still being
explored and will continue to change in accordance with
the nature and volume of available experimental data.
Undeniably, though, machine learning has had a huge
impact on biology and will continue to do so.

Published online xx xx xxxx

Automatic differentiation
A set of techniques to
automatically calculate the
gradient of a function in a
computer program. Used to
train neural networks, where
it is called ‘backpropagation’.

Gradients
The rate of change of one
property as another property
changes. In neural networks,
the set of gradients of the loss
function with respect to the
neural network parameters,
computed via a process known
as backpropagation, is used to
adjust the parameters and thus
train the model.

1.	 Ching, T. et al. Opportunities and obstacles for deep
learning in biology and medicine. J. R. Soc. Interface
15, 20170387 (2018).
This is a thorough review of applications of deep
learning to biology and medicine including many
references to the literature.

2.	 Mitchell, T. M. Machine Learning (McGraw Hill, 1997).
3.	 Goodfellow, I., Bengio Y. & Courville, A. Deep Learning

(MIT Press, 2016).
4.	 Libbrecht, M. W. & Noble, W. S. Machine learning

applications in genetics and genomics. Nat. Rev. Genet.
16, 321–332 (2015).

5.	 Zou, J. et al. A primer on deep learning in genomics.
Nat. Genet. 51, 12–18 (2019).

6.	 Myszczynska, M. A. et al. Applications of
machine learning to diagnosis and treatment

of neurodegenerative diseases. Nat. Rev. Neurol. 16,
440–456 (2020).

7.	 Yang, K. K., Wu, Z. & Arnold, F. H. Machine-​learning-
guided directed evolution for protein engineering.
Nat. Methods 16, 687–694 (2019).

8.	 Tarca, A. L., Carey, V. J., Chen, X.-W., Romero, R.
& Drăghici, S. Machine learning and its applications
to biology. PLoS Comput. Biol. 3, e116 (2007).
This is an introduction to machine learning
concepts and applications in biology with a focus
on traditional machine learning methods.

9.	 Silva, J. C. F., Teixeira, R. M., Silva, F. F.,
Brommonschenkel, S. H. & Fontes, E. P. B. Machine
learning approaches and their current application
in plant molecular biology: a systematic review.
Plant. Sci. 284, 37–47 (2019).

10.	 Kandoi, G., Acencio, M. L. & Lemke, N. Prediction of
druggable proteins using machine learning and systems
biology: a mini-​review. Front. Physiol. 6, 366 (2015).

11.	 Marblestone, A. H., Wayne, G. & Kording, K. P. Toward
an integration of deep learning and neuroscience.
Front. Comput. Neurosci. 10, 94 (2016).

12.	 Jiménez-​Luna, J., Grisoni, F. & Schneider, G.
Drug discovery with explainable artificial intelligence.
Nat. Mach. Intell. 2, 573–584 (2020).

13.	 Buchan, D. W. A. & Jones, D. T. The PSIPRED Protein
Analysis Workbench: 20 years on. Nucleic Acids Res.
47, W402–W407 (2019).

14.	 Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning
the regulatory code of the accessible genome with
deep convolutional neural networks. Genome Res. 26,
990–999 (2016).

www.nature.com/nrm

R e v i e w s

0123456789();:

15.	 Altman, N. & Krzywinski, M. Clustering. Nat. Methods
14, 545–546 (2017).

16.	 Hopf, T. A. et al. Mutation effects predicted from
sequence co-​variation. Nat. Biotechnol. 35, 128–135
(2017).

17.	 Zhang, Z. et al. Predicting folding free energy changes
upon single point mutations. Bioinformatics 28,
664–671 (2012).

18.	 Pedregosa, F. et al. Scikit-​learn: machine learning in
python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

19.	 Kuhn, M. Building predictive models in r using the
caret package. J. Stat. Softw. 28, 1–26 (2008).

20.	 Blaom, A. D. et al. MLJ: a Julia package for
composable machine learning. J. Open Source Softw.
5, 2704 (2020).

21.	 Jones, D. T. Setting the standards for machine learning
in biology. Nat. Rev. Mol. Cell Biol. 20, 659–660
(2019).

22.	 Alipanahi, B., Delong, A., Weirauch, M. T. &
Frey, B. J. Predicting the sequence specificities
of DNA- and RNA-​binding proteins by deep learning.
Nat. Biotechnol. 33, 831–838 (2015).

23.	 Senior, A. W. et al. Improved protein structure
prediction using potentials from deep learning.
Nature 577, 706–710 (2020).
Technology company DeepMind entered the
CASP13 assessment in protein structure prediction
and its method using deep learning was the most
accurate of the methods entered.

24.	 Esteva, A. et al. Dermatologist-​level classification of
skin cancer with deep neural networks. Nature 542,
115–118 (2017).

25.	 Tegunov, D. & Cramer, P. Real-​time cryo-​electron
microscopy data preprocessing with Warp.
Nat. Methods 16, 1146–1152 (2019).

26.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning.
Nature 521, 436–444 (2015).
This is a review of deep learning by some of the
major figures in the deep learning revolution.

27.	 Hastie T., Tibshirani R., Friedman J. The elements
of statistical learning: data mining, inference, and
prediction. 2nd Edn. (Springer Science & Business
Media; 2009).

28.	 Adebayo, J. et al. Sanity checks for saliency maps.
NeurIPS https://arxiv.org/abs/1810.03292 (2018).

29.	 Gal, Y. & Ghahramani, Z. Dropout as a Bayesian
approximation: representing model uncertainty in
deep learning. ICML 48, 1050–1059 (2016).

30.	 Smith, A. M. et al. Standard machine learning
approaches outperform deep representation learning
on phenotype prediction from transcriptomics data.
BMC Bioinformatics 21, 119 (2020).

31.	 Tibshirani, R. Regression shrinkage and selection
via the lasso. J. R. Stat. Soc. Ser. B. 58, 267–288
(1996).

32.	 Zou, H. & Hastie, T. Regularization and variable
selection via the elastic net. J. R. Stat. Soc. Ser. B. 67,
301–320 (2005).

33.	 Noble, W. S. What is a support vector machine?
Nat. Biotechnol. 24, 1565–1567 (2006).

34.	 Ben-​Hur, A. & Weston, J. A user’s guide to support
vector machines. Methods Mol. Biol. 609, 223–239
(2010).

35.	 Ben-​Hur, A., Ong, C. S., Sonnenburg, S., Schölkopf, B.
& Rätsch, G. Support vector machines and kernels
for computational biology. PLoS Comput. Biol. 4,
e1000173 (2008).
This is an introduction to SVMs with a focus
on biological data and prediction tasks.

36.	 Kircher, M. et al. A general framework for estimating
the relative pathogenicity of human genetic variants.
Nat. Genet. 46, 310–315 (2014).

37.	 Driscoll, M. K. et al. Robust and automated detection
of subcellular morphological motifs in 3D microscopy
images. Nat. Methods 16, 1037–1044 (2019).

38.	 Bzdok, D., Krzywinski, M. & Altman, N. Machine
learning: supervised methods. Nat. Methods 15, 5–6
(2018).

39.	 Wang, C. & Zhang, Y. Improving scoring-​docking-
screening powers of protein-​ligand scoring functions
using random forest. J. Comput. Chem. 38, 169–177
(2017).

40.	 Zeng, W., Wu, M. & Jiang, R. Prediction of
enhancer-​promoter interactions via natural language
processing. BMC Genomics 19, 84 (2018).

41.	 Olson, R. S., Cava, W. L., Mustahsan, Z., Varik, A. &
Moore, J. H. Data-​driven advice for applying machine
learning to bioinformatics problems. Pac. Symp.
Biocomput. 23, 192–203 (2018).

42.	 Rappoport, N. & Shamir, R. Multi-​omic and multi-​view
clustering algorithms: review and cancer benchmark.
Nucleic Acids Res. 47, 1044 (2019).

43.	 Steinegger, M. & Söding, J. MMseqs2 enables
sensitive protein sequence searching for the analysis
of massive data sets. Nat. Biotechnol. 35,
1026–1028 (2017).

44.	 Jain, A. K. Data clustering: 50 years beyond K-​means.
Pattern Recognit. Lett. 31, 651–666 (2010).

45.	 Ester M., Kriegel H.-P., Sander J., Xu X. A density-​based
algorithm for discovering clusters in large spatial
databases with noise. KDD‘96 Proc. Second Int. Conf.
Knowl. Discov. Data Mining. 96, 226–231 (1996).

46.	 Nguyen, L. H. & Holmes, S. Ten quick tips for effective
dimensionality reduction. PLoS Comput. Biol. 15,
e1006907 (2019).

47.	 Moon, K. R. et al. Visualizing structure and transitions
in high-​dimensional biological data. Nat. Biotechnol.
37, 1482–1492 (2019).

48.	 van der Maaten, L. & Hinton, G. Visualizing data using
t-​SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

49.	 Kobak, D. & Berens, P. The art of using t-​SNE for
single-​cell transcriptomics. Nat. Commun. 10, 5416
(2019).
This article provides a discussion and tips for using
t-​SNE as a dimensionality reduction technique on
single-​cell transcriptomics data.

50.	 Crick, F. The recent excitement about neural networks.
Nature 337, 129–132 (1989).

51.	 Geirhos, R. et al. Shortcut learning in deep neural
networks. Nat. Mach. Intell. 2, 665–673 (2020).
This article discusses a common problem in deep
learning called ‘shortcut learning’, where the
model uses decision rules that do not transfer
to real-​world data.

52.	 Qian, N. & Sejnowski, T. J. Predicting the secondary
structure of globular proteins using neural network
models. J. Mol. Biol. 202, 865–884 (1988).

53.	 deFigueiredo, R. J. et al. Neural-​network-based
classification of cognitively normal, demented,
Alzheimer disease and vascular dementia from single
photon emission with computed tomography image
data from brain. Proc. Natl Acad. Sci. USA 92,
5530–5534 (1995).

54.	 Mayr, A., Klambauer, G., Unterthiner, T. & Hochreiter, S.
DeepTox: toxicity prediction using deep learning.
Front. Environ. Sci. 3, 80 (2016).

55.	 Yang, J. et al. Improved protein structure prediction
using predicted interresidue orientations. Proc. Natl
Acad. Sci. USA 117, 1496–1503 (2020).

56.	 Xu, J., Mcpartlon, M. & Li, J. Improved protein
structure prediction by deep learning irrespective
of co-evolution information. Nat. Mach. Intell. 3,
601–609 (2021).

57.	 Poplin, R. et al. A universal SNP and small-​indel
variant caller using deep neural networks.
Nat. Biotechnol. 36, 983–987 (2018).

58.	 Fudenberg, G., Kelley, D. R. & Pollard, K. S. Predicting
3D genome folding from DNA sequence with Akita.
Nat. Methods 17, 1111–1117 (2020).

59.	 Zeng, H., Edwards, M. D., Liu, G. & Gifford, D. K.
Convolutional neural network architectures for
predicting DNA-​protein binding. Bioinformatics 32,
i121–i127 (2016).

60.	 Yao, R., Qian, J. & Huang, Q. Deep-​learning with
synthetic data enables automated picking of cryo-​EM
particle images of biological macromolecules.
Bioinformatics 36, 1252–1259 (2020).

61.	 Si, D. et al. Deep learning to predict protein backbone
structure from high-​resolution cryo-​EM density maps.
Sci. Rep. 10, 4282 (2020).

62.	 Poplin, R. et al. Prediction of cardiovascular risk
factors from retinal fundus photographs via deep
learning. Nat. Biomed. Eng. 2, 158–164 (2018).

63.	 AlQuraishi, M. End-​to-end differentiable learning of
protein structure. Cell Syst. 8, 292–301.e3 (2019).

64.	 Heffernan, R., Yang, Y., Paliwal, K. & Zhou, Y.
Capturing non-​local interactions by long short-​term
memory bidirectional recurrent neural networks for
improving prediction of protein secondary structure,
backbone angles, contact numbers and solvent
accessibility. Bioinformatics 33, 2842–2849 (2017).

65.	 Müller, A. T., Hiss, J. A. & Schneider, G. Recurrent
neural network model for constructive peptide design.
J. Chem. Inf. Model. 58, 472–479 (2018).

66.	 Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F.
& Sun, J. Doctor AI: predicting clinical events via
recurrent neural networks. JMLR Workshop Conf.
Proc. 56, 301–318 (2016).

67.	 Quang, D. & Xie, X. DanQ: a hybrid convolutional
and recurrent deep neural network for quantifying the
function of DNA sequences. Nucleic Acids Res. 44,
e107 (2016).

68.	 Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M.
& Church, G. M. Unified rational protein engineering

with sequence-​based deep representation learning.
Nat. Methods 16, 1315–1322 (2019).

69.	 Vaswani, A. et al. Attention is all you need.
arXiv https://arxiv.org/abs/1706.03762 (2017).

70.	 Elnaggar, A. et al. ProtTrans: towards cracking the
language of life’s code through self-supervised deep
learning and high performance computing. arXiv
https://arxiv.org/abs/2007.06225 (2020).

71.	 Jumper, J. et al. Highly accurate protein structure
prediction with AlphaFold. Nature 596, 583–589
(2021).

72.	 Battaglia, P. W. et al. Relational inductive biases, deep
learning, and graph networks. arXiv https://arxiv.org/
abs/1806.01261 (2018).

73.	 Stokes, J. M. et al. A deep learning approach to
antibiotic discovery. Cell 181, 475–483 (2020).
In this work, a deep learning model predicts
antibiotic activity, with one candidate showing
broad-​spectrum antibiotic activities in mice.

74.	 Gainza, P. et al. Deciphering interaction fingerprints
from protein molecular surfaces using geometric
deep learning. Nat. Methods 17, 184–192 (2020).

75.	 Strokach, A., Becerra, D., Corbi-​Verge, C., Perez-​Riba, A.
& Kim, P. M. Fast and flexible protein design using deep
graph neural networks. Cell Syst. 11, 402–411.e4
(2020).

76.	 Gligorijevic, V. et al. Structure-based function
prediction using graph convolutional networks.
Nat. Commun. 12, 3168 (2021).

77.	 Zitnik, M., Agrawal, M. & Leskovec, J. Modeling
polypharmacy side effects with graph convolutional
networks. Bioinformatics 34, i457–i466 (2018).

78.	 Veselkov, K. et al. HyperFoods: machine intelligent
mapping of cancer-​beating molecules in foods.
Sci. Rep. 9, 9237 (2019).

79.	 Fey, M. & Lenssen, J. E. Fast graph representation
learning with PyTorch geometric. arXiv https://
arxiv.org/abs/1903.02428 (2019).

80.	 Zhavoronkov, A. et al. Deep learning enables rapid
identification of potent DDR1 kinase inhibitors.
Nat. Biotechnol. 37, 1038–1040 (2019).

81.	 Wang, Y. et al. Predicting DNA methylation state
of CpG dinucleotide using genome topological
features and deep networks. Sci. Rep. 6, 19598
(2016).

82.	 Linder, J., Bogard, N., Rosenberg, A. B. & Seelig, G.
A generative neural network for maximizing fitness
and diversity of synthetic DNA and protein sequences.
Cell Syst. 11, 49–62.e16 (2020).

83.	 Greener, J. G., Moffat, L. & Jones, D. T. Design
of metalloproteins and novel protein folds using
variational autoencoders. Sci. Rep. 8, 16189
(2018).

84.	 Wang, J. et al. scGNN is a novel graph neural
network framework for single-​cell RNA-​Seq analyses.
Nat. Commun. 12, 1882 (2021).

85.	 Paszke, A. et al. PyTorch: an imperative style,
high-​performance deep learning library. Adv. Neural
Inf. Process. Syst. 32, 8024–8035 (2019).

86.	 Abadi M. et al. Tensorflow: a system for large-​scale
machine learning. 12th USENIX Symposium on
Operating Systems Design and Implementation.
265–283 (USENIX, 2016).

87.	 Wei, Q. & Dunbrack, R. L. Jr The role of balanced
training and testing data sets for binary classifiers
in bioinformatics. PLoS ONE 8, e67863 (2013).

88.	 Walsh, I., Pollastri, G. & Tosatto, S. C. E. Correct
machine learning on protein sequences: a peer-​
reviewing perspective. Brief. Bioinform 17, 831–840
(2016).
This article discusses how peer reviewers can
assess machine learning methods in biology, and
by extension how scientists can design and conduct
such studies properly.

89.	 Schreiber, J., Singh, R., Bilmes, J. & Noble, W. S.
A pitfall for machine learning methods aiming to
predict across cell types. Genome Biol. 21, 282
(2020).

90.	 Chothia, C. & Lesk, A. M. The relation between the
divergence of sequence and structure in proteins.
EMBO J. 5, 823–826 (1986).

91.	 Söding, J. & Remmert, M. Protein sequence
comparison and fold recognition: progress and
good-​practice benchmarking. Curr. Opin. Struct. Biol.
21, 404–411 (2011).

92.	 Steinegger, M. et al. HH-​suite3 for fast remote
homology detection and deep protein annotation.
BMC Bioinformatics 20, 473 (2019).

93.	 Sillitoe, I. et al. CATH: expanding the horizons of
structure-​based functional annotations for genome
sequences. Nucleic Acids Res. 47, D280–D284
(2019).

Nature Reviews | Molecular Cell Biology

R e v i e w s

https://arxiv.org/abs/1810.03292
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2007.06225
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428

0123456789();:

94.	 Cheng, H. et al. ECOD: an evolutionary classification
of protein domains. PLoS Comput. Biol. 10, e1003926
(2014).

95.	 Li, Y. & Yang, J. Structural and sequence similarity
makes a significant impact on machine-​learning-
based scoring functions for protein-​ligand interactions.
J. Chem. Inf. Model. 57, 1007–1012 (2017).

96.	 Zech, J. R. et al. Variable generalization performance
of a deep learning model to detect pneumonia in chest
radiographs: a cross-​sectional study. PLoS Med. 15,
e1002683 (2018).

97.	 Szegedy, C. et al. Intriguing properties of neural
networks. arXiv https://arxiv.org/abs/1312.6199
(2014).

98.	 Hie, B., Cho, H. & Berger, B. Realizing private and
practical pharmacological collaboration. Science 362,
347–350 (2018).

99.	 Beaulieu-​Jones, B. K. et al. Privacy-​preserving
generative deep neural networks support clinical
data sharing. Circ. Cardiovasc. Qual. Outcomes 12,
e005122 (2019).

100.	Konečný, J., Brendan McMahan, H., Ramage, D.
& Richtárik, P. Federated optimization: distributed
machine learning for on-device intelligence. arXiv
https://arxiv.org/abs/1610.02527 (2016).

101.	Pérez, A., Martínez-​Rosell, G. & De Fabritiis, G.
Simulations meet machine learning in structural
biology. Curr. Opin. Struct. Biol. 49, 139–144 (2018).

102.	Noé, F., Olsson, S., Köhler, J. & Wu, H. Boltzmann
generators: sampling equilibrium states of many-​body
systems with deep learning. Science 365, 6457
(2019).

103.	Shrikumar, A., Greenside, P. & Kundaje, A. Reverse-
complement parameter sharing improves deep
learning models for genomics. bioRxiv https://www.
biorxiv.org/content/10.1101/103663v1 (2017).

104.	Lopez, R., Gayoso, A. & Yosef, N. Enhancing scientific
discoveries in molecular biology with deep generative
models. Mol. Syst. Biol. 16, e9198 (2020).

105.	Anishchenko, I., Chidyausiku, T. M., Ovchinnikov, S.,
Pellock, S. J. & Baker, D. De novo protein design by
deep network hallucination. bioRxiv https://doi.org/
10.1101/2020.07.22.211482 (2020).

106.	Innes, M. et al. A differentiable programming system
to bridge machine learning and scientific computing.
arXiv https://arxiv.org/abs/1907.07587 (2019).

107.	 Ingraham J., Riesselman A. J., Sander C., Marks D. S.
Learning protein structure with a differentiable simulator.
ICLR https://openreview.net/forum?id=Byg3y3C9Km
(2019).

108.	Jumper, J. M., Faruk, N. F., Freed, K. F. & Sosnick, T. R.
Trajectory-​based training enables protein simulations
with accurate folding and Boltzmann ensembles in
cpu-​hours. PLoS Comput. Biol. 14, e1006578 (2018).

109.	Wang, Y., Fass, J. & Chodera, J. D. End-to-end
differentiable molecular mechanics force field
construction. arXiv http://arxiv.org/abs/2010.01196
(2020).

110.	 Bradbury, J. et al. JAX: composable transformations of
Python+NumPy programs. GitHub http://github.com/
google/jax (2018).

111.	 Chen, K. M., Cofer, E. M., Zhou, J. & Troyanskaya, O. G.
Selene: a PyTorch-​based deep learning library for
sequence data. Nat. Methods 16, 315–318 (2019).
This work provides a software library based on
PyTorch providing functionality for biological
sequences.

112.	Kopp, W., Monti, R., Tamburrini, A., Ohler, U.
& Akalin, A. Deep learning for genomics using
Janggu. Nat. Commun. 11, 3488 (2020).

113.	Schoenholz, S. S. & Cubuk, E. D. JAX, M.D.: end-to-
end differentiable, hardware accelerated, molecular
dynamics in pure Python. arXiv https://arxiv.org/
abs/1912.04232 (2019).

114.	Avsec, Ž. et al. The Kipoi repository accelerates
community exchange and reuse of predictive models
for genomics. Nat. Biotechnol. 37, 592–600 (2019).

115.	 Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J.
& Maier-​Hein, K. H. nnU-​Net: a self-​configuring
method for deep learning-​based biomedical image
segmentation. Nat Methods 18, 203–211 (2020).

116.	Livesey, B. J. & Marsh, J. A. Using deep mutational
scanning to benchmark variant effect predictors and
identify disease mutations. Mol. Syst. Biol. 16, e9380
(2020).

117.	AlQuraishi, M. ProteinNet: a standardized data
set for machine learning of protein structure.
BMC Bioinformatics 20, 311 (2019).

118.	Townshend, R. J. L. et al. ATOM3D: tasks on molecules
in three dimensions. arXiv https://arxiv.org/abs/
2012.04035 (2020).

119.	Rao, R. et al. Evaluating protein transfer learning with
TAPE. Adv. Neural. Inf. Process. Syst. 32, 9689–9701
(2019).

120.	Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K.
& Moult, J. Critical assessment of methods of protein
structure prediction (CASP) — round XIII. Proteins 87,
1011–1020 (2019).

121.	Zhou, N. et al. The CAFA challenge reports improved
protein function prediction and new functional
annotations for hundreds of genes through
experimental screens. Genome Biol. 20, 244 (2019).

122.	Munro, D. & Singh, M. DeMaSk: a deep mutational
scanning substitution matrix and its use for variant
impact prediction. Bioinformatics 36, 5322–5329
(2020).

123.	Haario, H. & Taavitsainen, V.-M. Combining soft and
hard modelling in chemical kinetic models. Chemom.
Intell. Lab. Syst. 44, 77–98 (1998).

124.	Cozzetto, D., Minneci, F., Currant, H. & Jones, D. T.
FFPred 3: feature-​based function prediction for all
gene ontology domains. Sci. Rep. 6, 31865 (2016).

125.	Nugent, T. & Jones, D. T. Transmembrane protein
topology prediction using support vector machines.
BMC Bioinformatics 10, 159 (2009).

126.	Bao, L., Zhou, M. & Cui, Y. nsSNPAnalyzer: identifying
disease-​associated nonsynonymous single nucleotide
polymorphisms. Nucleic Acids Res. 33, W480–W482
(2005).

127.	Li, W., Yin, Y., Quan, X. & Zhang, H. Gene expression
value prediction based on XGBoost algorithm. Front.
Genet. 10, 1077 (2019).

128.	Zhang, Y. & Skolnick, J. SPICKER: a clustering approach
to identify near-​native protein folds. J. Comput. Chem.
30, 865–871 (2004).

129.	Teodoro, M. L., Phillips, G. N. Jr & Kavraki, L. E.
Understanding protein flexibility through
dimensionality reduction. J. Comput. Biol. 10,
617–634 (2003).

130.	Schlichtkrull, M. et al. Modeling relational data with
graph convolutional networks. arXiv https://arxiv.org/
abs/1703.06103 (2019).

131.	Pandarinath, C. et al. Inferring single-​trial neural
population dynamics using sequential auto-​encoders.
Nat. Methods 15, 805–815 (2018).

132.	Antczak, M., Michaelis, M. & Wass, M. N.
Environmental conditions shape the nature of a minimal
bacterial genome. Nat. Commun. 10, 3100 (2019).

133.	Sun, T., Zhou, B., Lai, L. & Pei, J. Sequence-​based
prediction of protein protein interaction using a
deep-​learning algorithm. BMC Bioinformatics 18,
277 (2017).

134.	Hiranuma, N. et al. Improved protein structure
refinement guided by deep learning based accuracy
estimation. Nat. Commun. 12, 1340 (2021).

135.	Pagès, G., Charmettant, B. & Grudinin, S. Protein
model quality assessment using 3D oriented
convolutional neural networks. Bioinformatics 35,
3313–3319 (2019).

136.	Pires, D. E. V., Ascher, D. B. & Blundell, T. L. DUET:
a server for predicting effects of mutations on protein
stability using an integrated computational approach.
Nucleic Acids Res. 42, W314–W319 (2014).

137.	Yuan, Y. & Bar-​Joseph, Z. Deep learning for inferring
gene relationships from single-​cell expression data.
Proc. Natl Acad. Sci. USA 116, 27151–27158 (2019).

138.	Chen, L., Cai, C., Chen, V. & Lu, X. Learning a
hierarchical representation of the yeast transcriptomic
machinery using an autoencoder model. BMC
Bioinformatics 17, S9 (2016).

139.	Kantz, E. D., Tiwari, S., Watrous, J. D., Cheng, S.
& Jain, M. Deep neural networks for classification of

LC-​MS spectral peaks. Anal. Chem. 91, 12407–12413
(2019).

140.	Dührkop, K. et al. SIRIUS 4: a rapid tool for turning
tandem mass spectra into metabolite structure
information. Nat. Methods 16, 299–302 (2019).

141.	Liebal, U. W., Phan, A. N. T., Sudhakar, M., Raman, K.
& Blank, L. M. Machine learning applications for mass
spectrometry-​based metabolomics. Metabolites 10,
243 (2020).

142.	Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H.
CryoDRGN: reconstruction of heterogeneous cryo-​EM
structures using neural networks. Nat. Methods 18,
176–185 (2021).

143.	Schmauch, B. et al. A deep learning model to predict
RNA-​Seq expression of tumours from whole slide
images. Nat. Commun. 11, 3877 (2020).

144.	Das, P. et al. Accelerated antimicrobial discovery via
deep generative models and molecular dynamics
simulations. Nat. Biomed. Eng. 5, 613–623 (2021).

145.	Gligorijevic, V., Barot, M. & Bonneau, R. deepNF:
deep network fusion for protein function prediction.
Bioinformatics 34, 3873–3881 (2018).

146.	Karpathy A. A recipe for training neural networks.
https://karpathy.github.io/2019/04/25/recipe
(2019).

147.	Bengio, Y. Practical recommendations for gradient-​
based training of deep architectures. Lecture Notes
Comput. Sci. 7700, 437–478 (2012).

148.	Roberts, M. et al. Common pitfalls and
recommendations for using machine learning to
detect and prognosticate for COVID-19 using chest
radiographs and CT scans. Nat. Mach. Intell. 3,
199–217 (2021).
This study assesses 62 machine learning studies
that analyse medical images for COVID-19 and
none is found to be of clinical use, indicating the
difficulties of training a useful model.

149.	List, M., Ebert, P. & Albrecht, F. Ten simple rules for
developing usable software in computational biology.
PLoS Comput. Biol. 13, e1005265 (2017).

150.	Sonnenburg, S. Ã., Braun, M. L., Ong, C. S. & Bengio, S.
The need for open source software in machine learning.
J. Mach. Learn. Res. 8, 2443–2466 (2007).

Acknowledgements
The authors thank members of the UCL Bioinformatics Group
for valuable discussions and comments. This work was sup-
ported by the European Research Council Advanced Grant
ProCovar (project ID 695558).

Author contributions
All authors researched data for the article, contributed sub-
stantially to discussion of the content, wrote the article and
reviewed the manuscript before submission.

Competing interests
The authors declare no competing interests.

Peer review information
Nature Reviews Molecular Cell Biology thanks S. Draghici
who co-​reviewed with T. Nguyen; B. Chain; S. Haider;
F. Mahmood; and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Related links
Caret: https://topepo.github.io/caret
Colaboratory: https://research.google.com/colaboratory
Graph Nets: https://github.com/deepmind/graph_nets
MLJ: https://alan-​turing-​institute.github.io/MLJ.jl/stable
PyTorch: https://pytorch.org
PyTorch Geometric: https://pytorch-​geometric.readthedocs.
io/en/latest
scikit-​learn: https://scikit-​learn.org/stable
Tensorflow: https://www.tensorflow.org

© Springer Nature Limited 2021

www.nature.com/nrm

R e v i e w s

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1610.02527
https://www.biorxiv.org/content/10.1101/103663v1
https://www.biorxiv.org/content/10.1101/103663v1
https://doi.org/10.1101/2020.07.22.211482
https://doi.org/10.1101/2020.07.22.211482
https://arxiv.org/abs/1907.07587
https://openreview.net/forum?id=Byg3y3C9Km
http://arxiv.org/abs/2010.01196
http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/1912.04232
https://arxiv.org/abs/1912.04232
https://arxiv.org/abs/2012.04035
https://arxiv.org/abs/2012.04035
https://arxiv.org/abs/1703.06103
https://arxiv.org/abs/1703.06103
https://karpathy.github.io/2019/04/25/recipe
https://topepo.github.io/caret
https://research.google.com/colaboratory
https://github.com/deepmind/graph_nets
https://alan-turing-institute.github.io/MLJ.jl/stable
https://pytorch.org
https://pytorch-geometric.readthedocs.io/en/latest
https://pytorch-geometric.readthedocs.io/en/latest
https://scikit-learn.org/stable
https://www.tensorflow.org

	A guide to machine learning for biologists

	Key concepts

	General terms.
	Supervised and unsupervised learning.
	Classification, regression and clustering problems.
	Classes and labels.
	Loss or cost functions.
	Parameters and hyperparameters.
	Training, validation and testing.
	Doing machine learning

	Overfitting and underfitting.
	Inductive bias and the bias–variance trade-​off.

	Traditional machine learning

	Use of classification and regression models.
	Use of clustering models.
	Dimensionality reduction.

	Artificial neural networks

	Basic principles of neural networks.
	Multilayer perceptrons.
	Convolutional neural networks.
	Recurrent neural networks.
	Role of attention mechanisms and the use of transformers.
	Graph convolutional networks.
	Autoencoders.
	Training and improving neural networks.

	Challenges for biological applications

	Data availability.
	Data leakage.
	Evaluating articles that use machine learning

	Interpretability of models.
	Privacy-​preserving machine learning.
	The need for interdisciplinary collaborations.

	Future directions

	Acknowledgements

	Fig. 1 Choosing and training a machine learning method.
	Fig. 2 Training machine learning methods.
	Fig. 3 Traditional machine learning methods.
	Fig. 4 Neural network methods.
	Table 1 Comparison of different machine learning methods.
	Table 2 Recommendations for the use of machine learning strategies for different biological data types.

