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“The choice we make during our daily
lives might ruin our short-term memory
or make us fat or hasten death, but they
won’t affect our genes”
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A single winter of overeating as a youngster
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Epi- [Greek]: ‘on the top of’, ‘above’
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Epigenetics: (heritable) changes on genetics that do NOT involve changes to
the underlying DNA sequence.
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Epigenetics signals (1)

* DNA methylation

* Protein binding on DNA
* Histone modification

* Chromatin accessibility
* Nucleosome occupancy
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* DNA methylation

* Protein binding on DNA
* Histone modification

* Chromatin accessibility
* Nucleosome occupancy



DNA Methylation

An epigenetic modification of the DNA sequence: adding a
methyl group to the 5 position of cytosine (5mC)
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Primarily happens at CpG sites (C followed by a G),
although non-CG methylation exists

Advances in Genetics Volume 70 2010 27 - 56

http://dx.doi.org/10.1016/B978-0-12-380866-0.6000Z-2



DNA Methylation

Expressed p300
L. A 1 X
CpG Island CpG Island

within 2 Kbp of TSS

Silenced
- S
ppG Island : CpG Island

within 2 Kbp of TSS
Varley K E et al. Genome Res. 2013;23:555-567

Methylation of CpG islands in/near promoter region of gene can silence
gene expression



Function of DNA methylation

* Important in gene regulation
* Methylation of promoter regions can suppress gene expression

* Plays crucial role in cell development
* Heritable during cell division
* Helps cells establish identity during cell/tissue differentiation

* Can be influenced by environment
 Good candidate to mediate GxE interactions



Sequencing approaches for DNA methylation

* Capture-based or enrichment-based sequencing

* Use methyl-binding proteins or antibodies to capture methylated DNA
fragments, then sequence fragments

* Resolution is low: can typically quantify the amount of DNA methylation in
100-200 bp regions
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Sequencing approaches for DNA methylation

* Bisulfite-conversion-based sequencing
 Bisulfite treatment converts unmethylated C'sto T's
* Sequencing converted data gives single-bp resolution
e Can measure methylation status of each CpG site
* Until recently, not possible to distinguish 5mC from 5hmC

 Nowadays: bisulfite sequencing



Sequencing approaches for DNA methylation

* Bisulfite-conversion-based sequencing
 Bisulfite treatment converts unmethylated C'sto T's
* Sequencing converted data gives single-bp resolution
e Can measure methylation status of each CpG site
* Until recently, not possible to distinguish 5mC from 5hmC

 Nowadays: bisulfite sequencing (BS-seq or WGBS)



Bisulfite sequencing (BS-seq)

* Technology in a nutshell:

— Treat fragmented DNA with bisulfite
* Unmethylated C will be converted to U, amplifiedasT C =—>T
* Methylated C will be protected and remain C CMe=>
* No change for other bases

— Amplify the treated DNA
— Sequence the DNA segments
— Align sequence reads to genome



Bisulfite sequencing (BS-seq)

Watson >>AC"GTTCGCTTGAG>> C™ methylated
Crick  <<TGC"AAGCGAACTC<< C Un-methylated

1) Denaturation @

Watson >>AC"GTTCGCTTGAG>> Crick <<TGC"AAGCGAACTC<<

2) Bisulfite Treatment @

BSW >>AC"GTTUGUTTGAG>> BSC <<TGCrAAGUGAAUTU<KL
3) PCR Amplification @

BSW >>ACGTTTGTTTGAG>> BSC <<TGCrAAGTGAATTT<<L

BSWR <<TG CAAACAAACTC<KL BSCR >>ACG TTCACTTAAA>>

Xi and Li (2009) BMC Bioinformatics



BS-seq alighment software

* Bismark
* Faster than other programs
* User-friendly in terms of extracting data, interfacing with other software

s/)% Babraham Bioinformatics

Institute

About | People | Services | Projects | Training | Publications

Bismark

A tool to map bisulfite converted sequence reads and determine cytosine methylation states
Language Perl
GELTHTETETEE A functional version of Bowtie2 or HISAT2 is required. For BAM output Samtools is also required

Code Maturity ESiEl]C]

[o.LERCICELET M Yes, under GNU GPL v3 or later

Mission The less people know about how sausages and our code are made, the better they sleep at night
Statement (untracable author)

(LI ET 8l Felix Krueger

Download Now




Bismark usage

1. Mapping

bismark ——genome /data/genomes/homo_sapiens/GRCh37/ test_dataset. fastq

2. Methylation data extraction

bismark_methylation_extractor —-—-gzip --bedGraph test_dataset_bismark_bt2.bam



BS-seq alignment summary

® Methylated
O Unmethylated > [ ) >
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genome

CpG 1 CpG 2 CpG 3 CpG 4 CpG 5

Methylated counts (X) 1 2 1 2 0
Coverage (N) 1 4 2 3 2 WGBS
data
Methylation level (X/N) 1 0.5 0.5 0.67 0




BS-seq extracted data summary

* At each position, we have the total number of reads, and the
methylated number of reads:

Position of CpG site Total # reads # methylated reads
chrl 3010874 22 18
L:::l 3010894 |
1 12 10
chrl 3010957 7 6
chrl 3010971 6 6
chrl 3011025 7 5



Study design for BS-seq studies

* High costs = few samples typically analyzed
 Two common study designs

— Analysis of a single sample:
* Goal: observe methylation patterns across genome

* Commonly done to characterize methylome for a
particular cell type or species

— Comparison of several samples:
* Typical goal: compare methylation levels between groups
* Differential methylation analysis

 Compared with ChIP-seq and RNA-seq, methods are still
in early stage, and are often ad hoc



Single sample analysis: smoothing

e By borrowing information across sites, can
achieve high precision even with low coverage
— Pink line is from smoothing full 30x data
— Black line is from smoothing 5x version of data
— Correlation = .90 across entire dataset
— Median absolute difference of .056

Methylation
02 05 0.8
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Hansen et al. 2012 Genome Biology °’



Bioconductor package: bsseq

library (bsseq)
library (bsseqgData)

## take chr2l on BS.cancer.ex to speed up calculation
data (BS.cancer.ex)

ix = which(segnames (BS.cancer.ex)=="chr2l")

BS.chr2l = BS.cancer.ex[ix,]

## use BSmooth to smooth and call DMR
BS.chr21l = BSmooth(BS.chr2l) ## this takes 1-2 minutes

## perform t-test

BS.chr2l.tstat = BSmooth.tstat(BS.chr2l,
c (llclll , "C2" , "C3") ,c ("Nl" , "N2" , "N3") )

## call DMR
dmr .BSmooth <- dmrFinder (BS.chr2l.tstat, cutoff = c(-4.6, 4.6))



Multiple sample analysis: differential methylation

* Goal: identify differentially methylated regions (DMRs) between
groups.
* BS-seq data from cancer patients
* BS-seq data from healthy controls
* Find the genomic regions that have methylation difference!!!



Multiple sample analysis: differential methylation

 |f we have only one sample per group (no biological
replicates), Fisher’s exact test is a natural choice

 Example: single CpG site sequenced for 2 samples
— For tumor sample, 32/44 methylated reads

— For normal sample, 8/12 methylated reads

* Can then perform Fisher’s exact test on the

following table: Methylated Unmeth. Total reads
Tumor 32 12 44
J =
OR=1.33 Normal 8 4 12

e p=.73 Total 40 16 56




Multiple sample analysis: differential methylation

Naive t-test

Example: single CpG site sequenced for 4 samples

— For 2 tumor samples, 32/44 and 4/10 methylated reads
— For 2 normal samples, 8/12 and 12/34 methylated reads

For t-test, compute a proportion for each sample

— .727 and .400 for tumor samples

— .667 and .353 for normal samples

Difference in mean proportions = .563 - .510 = .053
T-statistic = 0.2375
p=.834



Multiple sample analysis: differential methylation

* Why Fisher’s and t-test are not good choices?



Multiple sample analysis: differential methylation

* Why Fisher’s and t-test are not good choices?

e Limited sample size

© Unstable variance estimation
‘ @ Reduced testing accuracy

e Account for sequencing depth
2 20
47 %0

e Separate technical and biological variation




Beta-binomial hierarchical model

 Example: CpG site i, two groups j=1 (cancer) and 2 (normal),
two replicates per group (k=1, 2)

Group 1: ( Group 2:
1y ~ Beta(p;y, ;) Ty ~ Beta(u;,, ;)
A / A

Rep 2: Rep 1: ( Rep 2:
M5, ~ Bin(N;35,7;5,)

M1, ~ Bin(N;3,7;1,) \Mill ~ Bin(N;15,7;1,)
* Biological variation modeled by dispersion parameter ¢;

‘ Rep 1:
My, ~ Bin(N,;1,7;1;)

— Replicates in each group may vary in true methylation proportion

* Technical variation: given N, and rt;;, number of methylated
reads M, varies due to random sampling of DNA

* Goal: test whether u;; and y;, are significantly different

IFeng et al. 2014 Nucleic Acids Research "



Estimating dispersion parameter

* To obtain stable estimates of dispersion with few samples, we:
— impose a log-normal prioron ¢: ¢, ~logn0rmal(mj,rj2)

— use information from all CpGs in the genome to estimate the
parameters m; and r?

* Choice of log-normal prior was motivated by distribution of
dispersion in bisulfite sequencing data

— RRBS data from mouse embryogenesis study
(Smith et al. 2012 Nature)

— Estimation robust to departure
from log-normality

— Prior provides a good “referee”

— Encourages dispersion estimates

to stay within bounds " loglestmated dispersion)
IFeng et al. 2014 Nucleic Acids Research “°



DMR identification

 DML: Differentially Methylated Loci
— Test for differential methylation at each CpG site

* Atsitei, test: Hy: p;q = pio

* Basic algorithm:

— Use naive estimates of ¢ across genome to estimate prior

— For each site i, estimate pu,;, and u;, as proportion of
methylated reads for each group

— Bayesian estimation of ¢, based on data and prior

— Plug in estimates of u; and ¢; to create Wald statistic of
form ¢ = My — My

il
| \/Vdr(ilil - .uiz)

IFeng et al. 2014 Nucleic Acids Research '



Bioconductor package: DSS

* Input data object has the same format as bsseq.
* DMLtest performs Wald test at each CpG.
e callDML/callDMR calls DML or DMR.

## two group comparison

dmlTest <- DMLtest (BSobj, groupl=c("Cl", "c2", "c3"),
group2=c("N1", "N2","N3"),
smoothing=TRUE, smoothing.span=500)

dmrs <- callDMR(dmlTest)

## A 2x2 design
DMLfit = DMLfit.multiFactor (RRBS, design, ~case+cell)

DMLtest = DMLtest.multiFactor (DMLfit, term="case")



DNA methylation summary

* Methylation plays important roles in many biological processes (stem
cell generation, aging, caner, etc.)

* Analysis of BS-seq data presents unique challenges
* Alignment of sequencing reads
* Limited sample size + multiple testing
 Splitting biological variability and technical variability

* Beta-binomial model is widely used



Epigenetics signals (2)

* DNA methylation

* Protein binding on DNA
* Histone modification

* Chromatin accessibility
* Nucleosome occupancy



ChiP-seq: Chromatin ImmunoPrecipitation
+ sequencing

* Scientific motivation: measure specific
biological modifications along the genome:

— Detect binding sites of DNA-binding proteins
(transcription factors, pol2, etc.) .

— quantify strengths of chromatin modifications
(e.g., histone modifications).



ChlP-seq experimental procedures

1. Crosslink: fix proteins on Isolate genomic DNA.
2. Sonication: cut DNA in small pieces of ~200bp.

3. IP: use antibody to capture DNA segments with
specific proteins.

4. Reverse crosslink: remove protein from DNA.
5. Sequence the DNA segments.



DNA with proteins
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By Richard Bourgon at UC Berkley



Protein/DNA Crosslinking in vivo

2 . 242 2 2 i
a2 3 422 22X 2
2 . 2 22 x 24 3
422 . 2 . 2 I
2 424 . - 2 23,2

By Richard Bourgon at UC Berkley



Sonication (cut DNA into pieces)

X .- 248 B X 2
-2 A0a a2 22X 9
——F -2 32 X 24 .3
422 . 2 ¢ . 2 . F
2 A4 o2 EE.2

By Richard Bourgon at UC Berkley



Capture using specific antibody
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By Richard Bourgon at UC Berkley



Immunoprecipitation (IP)
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By Richard Bourgon at UC Berkley



Reverse Crosslink and DNA Purification
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By Richard Bourgon at UC Berkley



Amplification (PCR)

By Richard Bourgon at UC Berkley



Methods and software for ChlP-seq peak calling



Data from ChlIP-seg

 Raw data: sequence reads.

e After alignments: genome coordinates
(chromosome/position) of all reads.

e Often, aligned reads are summarized into “counts” in
equal sized bins genome-wide:
1. segment genome into small bins of equal sizes (50bps).
2. Count number of reads started at each bin.



ChlP-seq ‘peak’ detection

 When plot the read counts against genome coordinates, the
binding sites show a tall and pointy peak. So “peaks” are used
to refer to protein binding or histone modification sites.

| I
qAl qA2 qA3.2 qA3.3 qB1 qB2 qC

Y SO

* Peak detection is the most fundamental problem in ChlP-seq
data analysis.



Simple ideas for peak detection

 Regions with reads clustered are likely to be peaks.

 Counts from neighboring windows need to be combined to
make inference (so that it’s more robust).

* To combine counts:
— Smoothing based: moving average (MACS, CisGenome), HMM-based
(Hpeak).
— Model clustering of reads starting position (PICS, GPS).
 Moreover, some special characteristics of the data can be
incorporated to improve the peak calling performance.



Control sample is important

* A control sample is necessary for correcting many artifacts:

DNA sequence dependent artifacts, chromatin structure,
repetitive regions, etc.

chr18
T o I el N Y . 7
pll.31 pl1.21 qll.2 ql21 ql23 q21.2 q21.33 q22.2 q23
&y ~ 13 kb -
w =3 44,122 kb 44,124 kb 44,126 kb 44,128 kb 44,130 kb 44,132 kb 44,
L | T T T T T O T T | |
233
p-020)
IP sample III
O P ] sk odi B . tl.l._.n Y TS T ) R oetn
p-020]
Control sample “
ac cabdh it ol cmssboadd. L RLA mdladidiee, b . aae e b ddl
RefSeq Genes I = = L!XHD1




Peak detection software

* MACS

* Cisgenome
e QUEST
 Hpeak

* PICS

* GPS

* PeakSeq

* MOSAICS



MACS (Model-based Analysis of ChIP-Seq)
Zhang et al. 2008, GB

Estimate shift size of reads d from the distance of two modes
from + and — strands.

Shift all reads toward 3’ end by d/2.

Use a dynamic Possion model to scan genome and score
peaks. Counts in a window are assumed to following Poisson
distribution with rate: A ..=max(sg, Myl Ao Ay

— The dynamic rate capture the local fluctuation of counts.

FDR estimates from sample swapping: flip the IP and control
samples and call peaks. Number of peaks detected under
each p-value cutoff will be used as null and used to compute

FDR.



Using MACS

e http://liulab.dfci.harvard.edu/MACS/index.html
e Written in Python, runs in command line.

e Command:

macsl4d -t sample.bed -c control.bed -n result



Cisgenome (Ji et al. 2008, NBT)

* Implemented with Windows GUI.
* Use a Binomial model to score peaks.

3
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EEEE = . ) 1i
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PICS: Probabilistic Inference for ChiP-seq
(Zhang et al. 2010 Biometrics)

Use shifted t-distributions to model peak shape.

Can deal with the clustering of multiple peaks in a
small region.

A two step approach:
— Roughly locate the candidate regions.
— Fit the model at each candidate region and assign a score.

EM algorithm for estimating parameters.
Computationally very intensive.
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Bioconductor packages for ChIP-seq

* There are several packages: chipseq, ChlPseqR,
BayesPeak, PICS, etc., but not very popular.

 Most people use command line driven software like
MACS or CisGenome GUI.



ChlP-seq for histone modification

* Histone modifications have various patterns.

— Some are similar to protein binding data, e.g.,
with tall, sharp peaks: H3K4.

— Some have wide (mega-bp) “blocks”: H3k9.

— Some are variable, with both peaks and blocks:
H3k27me3, H3k36me3.



Histone modification ChiP-seq data

DATA TYPE
DATA FILE

NAME
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Complications in histone peak/block calling

 Smoothing-based method:

— Long block requires bigger smoothing span, which hurts
boundary detection.

— Data with mixed peak/block (K27me3, K36me3) requires
varied span: adaptive fitting is computationally infeasible.

e HMM based method:

— Tend to over fit. Sometimes need to manually specify
transition matrix.



MACS2

* An updated version of MACS:
https://github.com/taoliu/MACS/blob/master/READ
ME.rst.

* Has an option for broad peak calling, which uses post
hoc approach to combine nearby peaks.

* Syntax:

macs2 callpeak -t ChIP.bam -c Control.bam
—-—-broad -g hs —--broad-cutoff 0.1



Summary for ChIP-seq peak calling

* ChlP-seq detects protein binding and histone modification along the
genome

* Detect regions with enriched reads
* Control sample is important

* Need to incorporate some special characteristics of the data to
improve peak detection

* Calling long peaks is challenging
* Various software available



ATAC-seg

* ATAC-seq: Assay for Transposase-Accessible Chromatin + sequencing
* Assess genome-wide chromatin accessibility

* Faster and more sensitive than old approach (DNase-seq, MNase-seq)

5007 -@- ATAC-seq data
ATAC-seq publication
4007
DNase-seq data
g 3004 FAIRE-seq data
g MNase-seq data
Z 2004
1004 /
gl
0- PO —

1 ] || | || I ]
2013 2014 2015 2016 2017 2018 2019
Year Yan et al. GB (2020) 21:22



ATAC-seq workflow

4 ! o
m ;D ,CCJ( Tn5
M Chromatin

0000 _0 0 __

=N S “e—~—_ Fragmented DNA
TN NN with adapters

https://www.biostars.org/p/393678/



https://www.biostars.org/p/393678/

ATAC-seq data analysis: peak calling

e Can be adopted from ChIP-seq with the assumption that ATAC-seq
peak patterns share the same properties

e Default software: MACS2
* A review is provided by Yan et al. on Genome Biology (2020)



ATAC-seq data analysis

Core analysis Advanced analysis
|
Peak calling Peak differential analysis Footprinting analysis
Peak based or slide-window De novo or motif-centric
Consensus peaks Supervised or unsupervised
I I N I | | Peak shape information Bias correction 4 s s
Nucleosome positioning
Count _or shape based Y ; ; ; A : All or nucleosomal fragments
No input control Peak annotation Motif enrichment analysis Low coverage beyond peaks
Paired-end or shift-extend
Tn5 bias Enriched pathways > Motif database
Replicates Visualization Overrepresentation or motif activity

Yan et al. GB (2020) 21:22



Single-cell ATAC-seq (scATAC-seq)

Chromatin

Accessibility at Single
Cell Resolution

Contact Me Request Pricing

Source: 10X Genomics



Single-cell ATAC-seq (scATAC-seq)

.. enables open chromatin profiling

of thousands of nuclei
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Source: 10X Genomics



Single-cell ATAC-seq (scATAC-seq)

B CD14 Monocytes
B CD16 Monocytes
Major Dendritic Cells
B Effector Memory CD8
B Memory CD4
Memory CD8
B Naive CD4
B Naive CD8
Natural Killer Cells
W BCells = =
W Other - —

rofiling

Nucleus 10,000

Source: 10X Genomics



scATAC-seq data analysis

e Seurat (R, Bioconductor)
¥ ()54

| 3 S C
A ‘ A I— A HomMe News PeopPLE RESEARCH PuBLICATIONS SEURAT JOIN/CONTACT NRERRES:
GeNowmics DAy

SEURAT é R toolkit for single cell genomics




scATAC-seq data analysis

e Seurat (R, Bioconductor)
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Other emerging methods
* scBS-seq: single-cell bisulfite sequencing
* NOME-seq: Nucleosome Occupancy + MEthylation

* sScNMT-seq: single-cell Nucleosome, Methylation and Transcription
segquencing

* MeRIP-seq: mRNA epigenetics modifications (m6A)
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