Epigenetics and its statistical methods

Hao Feng Assistant Professor Dept. of PQHS

"The choice we make during our daily lives might ruin our short-term memory or make us fat or hasten death, but they won't affect our genes"

"The choice we make during our daily lives might run our short-term memory or make us fat or hasten death, but they won't affect our genes"

Environment \rightarrow Epigenetics change

The CIA's Afghan Di

Lars Tunbjork / VU

Three generations: Dr. Lars Olov Bygren, with son Magnus and grandson Ludvig in Stockholm

Acta Biotheoretica March 2001, Volume 49, <u>Issue 1</u>, pp 53–59 | <u>Cite as</u>

Longevity Determined by Paternal Ancestors' Nutrition during Their Slow Growth Period

Authors	Authors and	daffiliations
Lars Olov Bygren 1 Gunnar Kaati 1 Sören Edvinsson 2	1. 2.	Department of Community Medicine and Rehabilitation, Social Medicine, Umeå University, Umeå, Sweden Demographic Database, Umeå University, Umeå, Sweden

A single winter of overeating as a youngster

Could lead to shorter life expectancy for one's grandchildren

Epi- [*Greek*]: 'on the top of', 'above'

Epi- [*Greek*]: 'on the top of', 'above'

Epigenetics: (heritable) changes on genetics that do NOT involve changes to the underlying DNA sequence.

Epigenetics: (heritable) changes on genetics that do NOT involve changes to the underlying DNA sequence.

Epigenetics signals (1)

- DNA methylation
- Protein binding on DNA
- Histone modification
- Chromatin accessibility
- Nucleosome occupancy
- •

Epigenetics signals (1)

- DNA methylation
- Protein binding on DNA
- Histone modification
- Chromatin accessibility
- Nucleosome occupancy
- •

DNA Methylation

An epigenetic modification of the DNA sequence: adding a methyl group to the 5 position of cytosine (5mC)

Primarily happens at **CpG sites** (C followed by a G), although non-CG methylation exists

Advances in Genetics Volume 70 2010 27 - 56

http://dx.doi.org/10.1016/B978-0-12-380866-0.60002-2

DNA Methylation

Methylation of CpG islands in/near promoter region of gene can silence gene expression

Function of DNA methylation

- Important in gene regulation
 - Methylation of promoter regions can suppress gene expression
- Plays crucial role in cell development
 - Heritable during cell division
 - Helps cells establish identity during cell/tissue differentiation
- Can be influenced by environment
 - Good candidate to mediate GxE interactions

Sequencing approaches for DNA methylation

- Capture-based or enrichment-based sequencing
 - Use methyl-binding proteins or antibodies to capture methylated DNA fragments, then sequence fragments
 - **Resolution is low**: can typically quantify the amount of DNA methylation in 100-200 bp regions

Capture-based or enrichment-based sequencing

Two-Steps:

- 1. Capture of methylated DNA region
- 2. Sequencing
- MeDIP-seq (Methylated DNA ImmunoPrecipitation)¹
 - uses antibody against methylated DNA
 - Assesses relative rather than absolute methylation levels
 - MEDIPS² is a popular tool for analysis
- Other similar approaches: MBD-seq^{3,} MIRA-seq⁴, methylCap-seq^{5,} MRE-seq⁶

¹Weber et al. (2005) *Nat Genet;* ²Chavez et al. (2010) *Gen Res;* ³Serre et al. (2010) *NAR;* ⁴Rauch et al. (2010) *Methods;* ⁵Brinkman et al. (2010) *Methods;* ⁶Maunakea et al. (2010) *Nature*

Sequencing approaches for DNA methylation

- Capture-based or enrichment-based sequencing
 - Use methyl-binding proteins or antibodies to capture methylated DNA fragments, then sequence fragments
 - Resolution is low: can typically quantify the amount of DNA methylation in 100-200 bp regions
- Bisulfite-conversion-based sequencing
 - Bisulfite treatment converts unmethylated C's to T's
 - Sequencing converted data gives single-bp resolution
 - Can measure methylation status of each CpG site
 - Until recently, not possible to distinguish 5mC from 5hmC
- Nowadays: bisulfite sequencing

Sequencing approaches for DNA methylation

- Capture-based or enrichment-based sequencing
 - Use methyl-binding proteins or antibodies to capture methylated DNA fragments, then sequence fragments
 - **Resolution is low**: can typically quantify the amount of DNA methylation in 100-200 bp regions
- Bisulfite-conversion-based sequencing
 - Bisulfite treatment converts unmethylated C's to T's
 - Sequencing converted data gives single-bp resolution
 - Can measure methylation status of each CpG site
 - Until recently, not possible to distinguish 5mC from 5hmC
- Nowadays: bisulfite sequencing (BS-seq or WGBS)

Bisulfite sequencing (BS-seq)

- Technology in a nutshell:
 - Treat fragmented DNA with bisulfite
 - Unmethylated C will be converted to U, amplified as T $C \rightarrow T$
 - Methylated C will be protected and remain C
 - No change for other bases
 - Amplify the treated DNA
 - Sequence the DNA segments
 - Align sequence reads to genome

 $C^m \rightarrow C$

Bisulfite sequencing (BS-seq)

Xi and Li (2009) BMC Bioinformatics

BS-seq alignment software

- Bismark
 - Faster than other programs
 - User-friendly in terms of extracting data, interfacing with other software

Bismark usage

1. Mapping

bismark --genome /data/genomes/homo_sapiens/GRCh37/ test_dataset.fastq

2. Methylation data extraction

bismark_methylation_extractor --gzip --bedGraph test_dataset_bismark_bt2.bam

BS-seq alignment summary

BS-seq extracted data summary

• At each position, we have the total number of reads, and the methylated number of reads:

Study design for BS-seq studies

- High costs \rightarrow few samples typically analyzed
- Two common study designs
 - Analysis of a single sample:
 - Goal: observe methylation patterns across genome
 - Commonly done to characterize methylome for a particular cell type or species
 - Comparison of several samples:
 - Typical goal: compare methylation levels between groups
 - Differential methylation analysis
 - Compared with ChIP-seq and RNA-seq, methods are still in early stage, and are often *ad hoc*

Single sample analysis: smoothing

- By borrowing information across sites, can achieve high precision even with low coverage
 - Pink line is from smoothing full 30x data
 - Black line is from smoothing 5x version of data
 - Correlation = .90 across entire dataset
 - Median absolute difference of .056

Hansen et al. 2012 Genome Biology ³⁷

Bioconductor package: bsseq

library (bsseq) library (bsseqData)

```
## take chr21 on BS.cancer.ex to speed up calculation
data(BS.cancer.ex)
ix = which(seqnames(BS.cancer.ex)=="chr21")
BS.chr21 = BS.cancer.ex[ix,]
```

use BSmooth to smooth and call DMR
BS.chr21 = BSmooth(BS.chr21) ## this takes 1-2 minutes

call DMR
dmr.BSmooth <- dmrFinder(BS.chr21.tstat, cutoff = c(-4.6, 4.6))</pre>

- Goal: identify differentially methylated regions (DMRs) between groups.
 - BS-seq data from cancer patients
 - BS-seq data from healthy controls
 - Find the genomic regions that have methylation difference!!!

- If we have only one sample per group (no biological replicates), Fisher's exact test is a natural choice
- Example: single CpG site sequenced for 2 samples

- For tumor sample, 32/44 methylated reads
- For normal sample, 8/12 methylated reads
- Can then perform Fisher's exact test on the following table. Mothulated Unmoth Total

	following table:		Methylated	Unmeth.	Total reads
•	OR = 1.33	Tumor	32	12	44
		Normal	8	4	12
•	p = .73	Total	40	16	56

Naïve t-test

- Example: single CpG site sequenced for 4 samples
 - For 2 tumor samples, 32/44 and 4/10 methylated reads
 - For 2 normal samples, 8/12 and 12/34 methylated reads
- For t-test, compute a proportion for each sample
 - .727 and .400 for tumor samples
 - .667 and .353 for normal samples
- Difference in mean proportions = .563 .510 = .053
- T-statistic = 0.2375
- p = .834

• Why Fisher's and *t*-test are not good choices?

- Why Fisher's and *t*-test are not good choices?
 - Limited sample size

Account for sequencing depth

$$\frac{2}{4} \neq \frac{20}{40}$$

• Separate technical and biological variation

Beta-binomial hierarchical model

 Example: CpG site *i*, two groups *j*=1 (cancer) and 2 (normal), two replicates per group (*k* = 1, 2)

- **Biological variation** modeled by dispersion parameter ϕ_{ij}
 - Replicates in each group may vary in true methylation proportion π_{ijk}
- Technical variation: given N_{ijk} and π_{ijk} , number of methylated reads M_{ijk} varies due to random sampling of DNA
- Goal: test whether μ_{i1} and μ_{i2} are significantly different

Estimating dispersion parameter

- To obtain stable estimates of dispersion with few samples, we:
 - impose a log-normal prior on ϕ : $\phi_{ij} \sim \log normal(m_j, r_j^2)$
 - use information from all CpGs in the genome to estimate the parameters m_j and r_j^2
- Choice of log-normal prior was motivated by distribution of dispersion in bisulfite sequencing data
 - RRBS data from mouse embryogenesis study (Smith *et al.* 2012 *Nature*)
 - Estimation robust to departure from log-normality
 - Prior provides a good "referee"
 - Encourages dispersion estimates to stay within bounds

DMR identification

- DML: Differentially Methylated Loci
 - Test for differential methylation at each CpG site
- At site *i*, test: $H_0: \mu_{i1} = \mu_{i2}$
- Basic algorithm:
 - Use naïve estimates of ϕ across genome to estimate prior
 - For each site *i*, estimate μ_{i1} and μ_{i2} as proportion of methylated reads for each group
 - Bayesian estimation of ϕ_{ii} based on data and prior
 - Plug in estimates of μ_{ij} and ϕ_{ij} to create Wald statistic of form $t_i = \frac{\hat{\mu}_{i1} - \hat{\mu}_{i2}}{\sqrt{Var(\hat{\mu}_{i1} - \hat{\mu}_{i2})}}$

¹Feng et al. 2014 Nucleic Acids Research ⁴⁷

Bioconductor package: DSS

- Input data object has the same format as bsseq.
- DMLtest performs Wald test at each CpG.
- callDML/callDMR calls DML or DMR.
DNA methylation summary

- Methylation plays important roles in many biological processes (stem cell generation, aging, caner, etc.)
- Analysis of BS-seq data presents unique challenges
 - Alignment of sequencing reads
 - Limited sample size + multiple testing
 - Splitting biological variability and technical variability
- Beta-binomial model is widely used

Epigenetics signals (2)

- DNA methylation
- Protein binding on DNA
- Histone modification
- Chromatin accessibility
- Nucleosome occupancy
- ...

ChIP-seq: <u>Chromatin ImmunoPrecipitation</u> + sequencing

- Scientific motivation: measure specific biological modifications along the genome:
 - Detect binding sites of DNA-binding proteins (transcription factors, pol2, etc.).
 - quantify strengths of chromatin modifications (e.g., histone modifications).

ChIP-seq experimental procedures

- 1. Crosslink: fix proteins on Isolate genomic DNA.
- 2. Sonication: cut DNA in small pieces of ~200bp.
- 3. IP: use antibody to capture DNA segments with specific proteins.
- 4. Reverse crosslink: remove protein from DNA.
- 5. Sequence the DNA segments.

DNA with proteins

Protein/DNA Crosslinking in vivo

Sonication (cut DNA into pieces)

Capture using specific antibody

Immunoprecipitation (IP)

Reverse Crosslink and DNA Purification

Amplification (PCR)

Methods and software for ChIP-seq peak calling

Data from ChIP-seq

- Raw data: sequence reads.
- After alignments: genome coordinates (chromosome/position) of all reads.
- Often, aligned reads are summarized into "counts" in equal sized bins genome-wide:
 - 1. segment genome into small bins of equal sizes (50bps).
 - 2. Count number of reads started at each bin.

ChIP-seq 'peak' detection

 When plot the read counts against genome coordinates, the binding sites show a tall and pointy peak. So "peaks" are used to refer to protein binding or histone modification sites.

 Peak detection is the most fundamental problem in ChIP-seq data analysis.

Simple ideas for peak detection

- Regions with reads clustered are likely to be peaks.
- Counts from neighboring windows need to be combined to make inference (so that it's more robust).
- To combine counts:
 - Smoothing based: moving average (MACS, CisGenome), HMM-based (Hpeak).
 - Model clustering of reads starting position (PICS, GPS).
- Moreover, some special characteristics of the data can be incorporated to improve the peak calling performance.

Control sample is important

 A control sample is necessary for correcting many artifacts: DNA sequence dependent artifacts, chromatin structure, repetitive regions, etc.

Peak detection software

- MACS
- Cisgenome
- QuEST
- Hpeak
- PICS
- GPS
- PeakSeq
- MOSAiCS

^{• ...}

MACS (Model-based Analysis of ChIP-Seq) Zhang et al. 2008, *GB*

- Estimate shift size of reads *d* from the distance of two modes from + and – strands.
- Shift all reads toward 3' end by *d*/2.
- Use a dynamic Possion model to scan genome and score peaks. Counts in a window are assumed to following Poisson distribution with rate: $\lambda_{local} = \max(\lambda_{BG}, [\lambda_{1k},] \lambda_{5k}, \lambda_{1ok})$

The dynamic rate capture the local fluctuation of counts.

 FDR estimates from sample swapping: flip the IP and control samples and call peaks. Number of peaks detected under each p-value cutoff will be used as null and used to compute FDR.

Using MACS

- http://liulab.dfci.harvard.edu/MACS/index.html
- Written in Python, runs in command line.
- Command:

macs14 -t sample.bed -c control.bed -n result

Cisgenome (Ji et al. 2008, NBT)

- Implemented with Windows GUI.
- Use a Binomial model to score peaks.

PICS: Probabilistic Inference for ChIP-seq (Zhang et al. 2010 Biometrics)

- Use shifted t-distributions to model peak shape.
- Can deal with the clustering of multiple peaks in a small region.
- A two step approach:
 - Roughly locate the candidate regions.
 - Fit the model at each candidate region and assign a score.
- EM algorithm for estimating parameters.
- Computationally very intensive.

PICS

$$f_i \sim \sum_{k=1}^{K} w_k t_4 \left(\mu_{fk}, \sigma_{fk}^2\right) \stackrel{d}{=} g_f(f_i | \boldsymbol{w}, \boldsymbol{\mu}, \boldsymbol{\delta}, \boldsymbol{\sigma}_f)$$

$$r_j \sim \sum_{k=1}^{K} w_k t_4 \left(\mu_{rk}, \sigma_{rk}^2\right) \stackrel{d}{=} g_r(r_j | \boldsymbol{w}, \boldsymbol{\mu}, \boldsymbol{\delta}, \boldsymbol{\sigma}_r)$$

Bioconductor packages for ChIP-seq

- There are several packages: chipseq, ChIPseqR, BayesPeak, PICS, etc., but not very popular.
- Most people use command line driven software like MACS or CisGenome GUI.

ChIP-seq for histone modification

- Histone modifications have various patterns.
 - Some are similar to protein binding data, e.g., with tall, sharp peaks: H3K4.
 - Some have wide (mega-bp) "blocks": H3k9.
 - Some are variable, with both peaks and blocks: H3k27me3, H3k36me3.

Histone modification ChIP-seq data

Complications in histone peak/block calling

- Smoothing-based method:
 - Long block requires bigger smoothing span, which hurts boundary detection.
 - Data with mixed peak/block (K27me3, K36me3) requires varied span: adaptive fitting is computationally infeasible.
- HMM based method:
 - Tend to over fit. Sometimes need to manually specify transition matrix.

MACS2

- An updated version of MACS: <u>https://github.com/taoliu/MACS/blob/master/READ</u> <u>ME.rst</u>.
- Has an option for broad peak calling, which uses post hoc approach to combine nearby peaks.
- Syntax:

macs2 callpeak -t ChIP.bam -c Control.bam
--broad -g hs --broad-cutoff 0.1

Summary for ChIP-seq peak calling

- ChIP-seq detects protein binding and histone modification along the genome
- Detect regions with enriched reads
- Control sample is important
- Need to incorporate some special characteristics of the data to improve peak detection
- Calling long peaks is challenging
- Various software available

ATAC-seq

- ATAC-seq: <u>Assay for Transposase</u>-<u>A</u>ccessible <u>C</u>hromatin + sequencing
- Assess genome-wide chromatin accessibility
- Faster and more sensitive than old approach (DNase-seq, MNase-seq)

ATAC-seq workflow

ATAC-seq data analysis: peak calling

- Can be adopted from ChIP-seq with the assumption that ATAC-seq peak patterns share the same properties
- Default software: MACS2
- A review is provided by Yan *et al.* on Genome Biology (2020)

ATAC-seq data analysis

Single-cell ATAC-seq (scATAC-seq)

Single-cell ATAC-seq (scATAC-seq)

... enables open chromatin profiling of thousands of nuclei

Source: 10X Genomics

Single-cell ATAC-seq (scATAC-seq)

scATAC-seq data analysis

• Seurat (R, Bioconductor)

	About	Install	Vignettes	Extensions	FAQs	Contact	Search
--	-------	---------	-----------	------------	------	---------	--------
scATAC-seq data analysis

• Seurat (R, Bioconductor)

Other emerging methods

- scBS-seq: single-cell bisulfite sequencing
- NOME-seq: <u>N</u>ucleosome <u>O</u>ccupancy + <u>ME</u>thylation
- scNMT-seq: single-cell <u>N</u>ucleosome, <u>M</u>ethylation and <u>T</u>ranscription sequencing
- MeRIP-seq: mRNA epigenetics modifications (m6A)

Internship positions in statistical bioinformatics are available!