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Lecture 10: Support Vector Machines
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Support Vector Machines

Dr. Vladimir Vapnik (1936 - present).

Moved from USSR to USA in 1990, and worked at AT&T Bell Lab.

Inventor of the Support Vector Machines.
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Support Vector Machines

Here we approach the two-class classification problem in a direct way:

We try and find a plane that separates the classes in feature space.

If we cannot, we get creative in two ways:
1 We soften what we mean by “separates”, and
2 We enrich and enlarge the feature space so that separation is possible.
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Hyperplane

A hyperplane in p dimensions is a flat affine subspace of dimension
p− 1.

In general the equation for a hyperplane has the form

β0 + β1X1 + β2X2 + ...+ βpXp = 0

In p = 2 dimensions a hyperplane is a line.

If β0 = 0, the hyperplane goes through the origin, otherwise not.

The vector β = (β1, β2, ..., βp) is called the normal vector — it points
in a direction orthogonal to the surface of a hyperplane.

Introduction 4 / 30



Hyperplane example in 2D
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Separating Hyperplanes

If f(X) = β0 + β1X1 + ...+ βpXp,then f(X) > 0 for points on one
side of the hyperplane, and f(X) < 0 for points on the other.

If we code the colored points as Yi = +1 for blue, say, and Yi = −1
for mauve, then if Yi · f(Xi) > 0 for all i, f(X) = 0 defines a
separating hyperplane.
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Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the biggest gap
or margin between the two classes.
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Non-separable data
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Noisy data

Sometimes the data are separable, but noisy. This can lead to a poor
solution for the maximal-margin classifier.

The support vector classifier maximizes a soft margin.
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Support Vector Classifier

C: a budget
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When the data are not perfectly separable in the feature space, we
may allow some observations to be on the “wrong” side of the margin.

We give “allowances” to the observations but control the total
“budget”.

A large C: the margin is large and many observations can be support
vectors.
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Budget C: regularization parameter
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Feature Expansion and Kernels
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Linear boundary can fail
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Feature Expansion

Enlarge the space of features by including transformations; e.g.
X2

1 , X
3
1 , X1X2, X1X

2
2 , ...Hence go from a p-dimensional space to a

M > p dimensional space.

Fit a support-vector classifier in the enlarged space.

This results in non-linear decision boundaries in the original space.

Example: Suppose we use (X1, X2, X
2
1 , X

2
2 , X1X2) instead of just

(X1, X2). Then the decision boundary would be of the form

β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
2 + β5X1X2 = 0

This leads to nonlinear decision boundaries in the original space (quadratic
sections).
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Cubic polynomials example

Here we use a basis expansion of cubic polynomials

From 2 variables to 9 variables

The support-vector classifier in the enlarged space solves the problem
in the lower-dimensional space
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When domain knowledge is available, sometimes we could use explicit
transformations. But often we cannot.

2D classification.

Separable (and linear!) in features spaces of x21, x
2
2, x1x2

The linear hyperplane → nonlinear ellipsoidal decision boundary in
the original space.
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Nonlinearities and Kernels

Polynomials (especially high-dimensional ones) get wild rather fast.

There is a more elegant and controlled way to introduce nonlinearities
in support-vector classifiers — through the use of kernels.

Before we discuss these, we must understand the role of inner
products in support-vector classifiers.
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Inner products and support vectors

Inner product between two vectors:

〈xi,xj〉 =
p∑

k=1

xikxjk

The linear support vector classifier can be represented as (n
parameters):

f(x) = β0 +

n∑
i=1

αi〈x,xi〉

To estimate the parameters α1, ..., αn and β0, all we need are the
(
n
2

)
inner products 〈x,xi〉 between all pairs of training observations.

It turns out that most of the α̂i can be zero:

f(x) = β0 +
∑
i∈S

α̂i〈x,xi〉

S is the support set of indices i such that α̂i > 0. See slides 10.
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Kernels and Support Vector Machines

If we can compute inner-products between observations, we can fit a
SV classifier. Can be quite abstract!

Some special kernel functions can do this for us. E.g.

K(xi,xj) = (1 +

p∑
k=1

xikxjk)
d

can computes the inner-products needed for d dimensional
polynomials —

(
p+d
d

)
basis functions!

The solution has the form:

f(x) = β0 +
∑
i∈S

α̂iK(x,xi)

Introduction 20 / 30



the Kernels trick

h(x) is involved ONLY in the form of inner product! So, as long as
we define the kernel function

K(xi,xj) = 〈h(xi), h(xj)〉

which computes the inner product in the transformed space, we don’t
need to know what h(x) itself is! (Kernel trick)

Some commonly used Kernels:
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Radial Kernel

Implicit feature space; very high dimensional.

Controls variance by squashing down most dimensions severely.
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Radial basis kernel with γ = 1

C was tuned and picked = 1

Radial kernel performs the best here (close to Bayes optimal), as
might be expected give the data arise from mixtures of Gaussians.
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SVM in R

The function svm() in package e1071 provides svm solutions
efficiently.
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Example: Heart Data

can we make conclusion using this ROC? NO.
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Example: Heart Data

can we make conclusion using this ROC? NO.
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Example: Heart Testing Data

can we make conclusions? Yes we are ready now.
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SVM for more than 2 classes

The SVM as defined works for K = 2 classes. What do we do if we have
K > 2 classes?

OVA:
One versus All. Fit K different 2-class SVM classifiers
f̂k(x), k = 1, ...,K; each class versus the rest. Classify x∗ to the class
for which f̂k(x

∗) is largest.

OVO:
One versus One. Fit all

(
K
2

)
pairwise classifiers. Classify x∗ to the

class that wins the most pairwise competitions.

Which to choose? If K is not too large, use OVO.
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SVM usage

How to select kernel and parameters?

Domain knowledge:
- How complex should the space partition be?
- Should the surface be smooth?

Compare the models by their approximate testing error rate
cross-validation:
- Fit data using multiple kernels/parameters
- Estimate error rate for each setting
- Select the best-performing one
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SVM summary

Strengths of SVM:

flexibility

scales well for high-dimensional data

can control complexity and error trade-off explicitly

as long as a kernel can be defined, non-traditional(vector) data, like
strings, trees can be input

Weakness:

how to choose a good kernel?
(a low degree polynomial or radial basis function can be a good start)
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Textbook chapters

ISLR: chapter 9: 9.1 - 9.4
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