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Lecture 10: Support Vector Machines
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Support Vector Machines

e Dr. Vladimir Vapnik (1936 - present).
@ Moved from USSR to USA in 1990, and worked at AT&T Bell Lab.

@ Inventor of the Support Vector Machines.
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Support Vector Machines

@ Here we approach the two-class classification problem in a direct way:
o We try and find a plane that separates the classes in feature space.
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Support Vector Machines

@ Here we approach the two-class classification problem in a direct way:
o We try and find a plane that separates the classes in feature space.
o If we cannot, we get creative in two ways:

@ We soften what we mean by “separates”, and
@ We enrich and enlarge the feature space so that separation is possible.
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Hyperplane

A hyperplane in p dimensions is a flat affine subspace of dimension
p— 1.
@ In general the equation for a hyperplane has the form

Bo+ b1 X1+ foXo+ ...+ X, =0

@ In p = 2 dimensions a hyperplane is a line.
o If By = 0, the hyperplane goes through the origin, otherwise not.
@ The vector 5 = (1, B2, ..., Bp) is called the normal vector — it points

in a direction orthogonal to the surface of a hyperplane.
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Hyperplane example in 2D
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Separating Hyperplanes

X
1

o If f(X)=po+ X1+ ...+ BpXp,then f(X) > 0 for points on one
side of the hyperplane, and f(X) < 0 for points on the other.

o If we code the colored points as Y; = +1 for blue, say, and ¥; = —1
for mauve, then if ;- f(X;) > 0 for all ¢, f(X) = 0 defines a
separating hyperplane.
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Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the biggest gap
or margin between the two classes.

Constrained optimization problem

maximize M

BosB1s--:Bp
By P
i subject to Zﬁf =1,
j=1
: Yi(Bo + Brzi1 + ... + Bpxip) > M
. . forall :=1,...,N.
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Non-separable data
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The data on the left are
not separable by a linear
boundary.

This is often the -case,
unless N < p.
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@ Sometimes the data are separable, but noisy. This can lead to a poor
solution for the maximal-margin classifier.

@ The support vector classifier maximizes a soft margin.
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Support Vector Classifier

)
P
BoﬂrlnaXéinEllzeen M subject to ;@2 =1,
Yi(Bo + Brxa1 + BaTiz + ... + Bpxip) > M(1 — ¢;),
€ >0, zn:Gi <,
i=1
o C: a budget
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@ When the data are not perfectly separable in the feature space, we
may allow some observations to be on the “wrong” side of the margin.

o We give “allowances” to the observations but control the total
“budget”.

@ A large C: the margin is large and many observations can be support
vectors.
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Budget C": regularization parameter




Feature Expansion and Kernels )
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Linear boundary can fail
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Feature Expansion

@ Enlarge the space of features by including transformations; e.g.
X%,X%,XlXQ,XlX%, ...Hence go from a p-dimensional space to a
M > p dimensional space.

o Fit a support-vector classifier in the enlarged space.

@ This results in non-linear decision boundaries in the original space.

Example: Suppose we use (X1, Xo, X2, X2, X1 X5) instead of just
(X1, X2). Then the decision boundary would be of the form

Bo + B1X1 + BaXo + B3 X7 + BuX3 + B5X1Xa =0

This leads to nonlinear decision boundaries in the original space (quadratic

sections).
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Cubic polynomials example

@ Here we use a basis expansion of cubic polynomials

@ From 2 variables to 9 variables

@ The support-vector classifier in the enlarged space solves the problem
in the lower-dimensional space

-2
L

-4

Bo+B1X1+B2Xo+PB3 X7 +BaX3+B5 X1 Xo+B6 X5 +Br X5 +Bs X1 X5+Bo X7 X2 =0
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When domain knowledge is available, sometimes we could use explicit
transformations. But often we cannot.
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@ 2D classification.
e Separable (and linear!) in features spaces of 2§, x3, 122

@ The linear hyperplane — nonlinear ellipsoidal decision boundary in
the original space.
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Nonlinearities and Kernels

@ Polynomials (especially high-dimensional ones) get wild rather fast.

@ There is a more elegant and controlled way to introduce nonlinearities
in support-vector classifiers — through the use of kernels.

@ Before we discuss these, we must understand the role of inner
products in support-vector classifiers.



Inner products and support vectors

@ Inner product between two vectors:

X’vaj § TikZjk

@ The linear support vector classifier can be represented as (n
parameters):

n
fl@)=Bo+ Y ailx,x;)
i=1
@ To estimate the parameters aq, ..., o, and [y, all we need are the (Z)
inner products (x,x;) between all pairs of training observations.
It turns out that most of the &; can be zero:
fla)=Bo+ ) dilx,x;)
1€S

S is the support set of indices ¢ such that &; > 0. See slides 10.



Kernels and Support Vector Machines

o If we can compute inner-products between observations, we can fit a
SV classifier. Can be quite abstract!

@ Some special kernel functions can do this for us. E.g.
P
K(Xi, Xj) = (1 + Z .%'ikl'jk)d
k=1

can computes the inner-products needed for d dimensional

polynomials — (P1?) basis functions!

@ The solution has the form:

f@) = Bo+ Y &K (x,x;)

i€S
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the Kernels trick

@ h(z) is involved ONLY in the form of inner product! So, as long as
we define the kernel function

K(xi,x5) = (h(xi), h(x;))
which computes the inner product in the transformed space, we don't
need to know what h(x) itself is! (Kernel trick)
@ Some commonly used Kernels:
dth-Degree polynomial: K(z,z') = (1 + (z,z'))4,

Radial basis: K(z,2') = exp(—7||z — z'||?),
Neural network: K(z,z") = tanh(k;(z,2') + ko)
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Radial Kernel

p
K(zi,z7) = exp(—7 > _(2ij — 25)?)
j=1

@ Implicit feature space; very high dimensional.
@ Controls variance by squashing down most dimensions severely.
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SVM - Degree-4 Polynomial in Feature Space SVM - Radial Kernel in Feature Space
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Training Error: 0.180
Test Error: 0.245
Bayes Error:  0.210

o Radial basis kernel with v =1
@ C was tuned and picked =1

o Radial kernel performs the best here (close to Bayes optimal), as
might be expected give the data arise from mixtures of Gaussians.
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SVM in R

@ The function svm() in package 1071 provides svm solutions
efficiently.
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Example: Heart Data
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Example: Heart Data
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can we make conclusion using this ROC? NO.



Example: Heart Testing Data
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Example: Heart Testing Data
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can we make conclusions? Yes we are ready now.
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SVM for more than 2 classes

The SVM as defined works for K = 2 classes. What do we do if we have
K > 2 classes?

o OVA:

One versus All. Fit K different 2-class SVM classifiers

fk(x), k =1,.., K, each class versus the rest. Classify x* to the class
for which fi(x*) is largest.

e OVO:

One versus One. Fit all (%) pairwise classifiers. Classify z* to the
class that wins the most pairwise competitions.

Which to choose? If K is not too large, use OVO.
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SVM usage

How to select kernel and parameters?

@ Domain knowledge:
- How complex should the space partition be?
- Should the surface be smooth?

@ Compare the models by their approximate testing error rate
cross-validation:
- Fit data using multiple kernels/parameters
- Estimate error rate for each setting
- Select the best-performing one



Strengths of SVM:
o flexibility
@ scales well for high-dimensional data
@ can control complexity and error trade-off explicitly

@ as long as a kernel can be defined, non-traditional(vector) data, like
strings, trees can be input

Weakness:

@ how to choose a good kernel?
(a low degree polynomial or radial basis function can be a good start)
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Textbook chapters

@ ISLR: chapter 9: 9.1 - 9.4
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