PQHS 471

Lecture 11: Neural Network, Deep Learning

1/39

Introduction to artificial neural network (ANN or NN)

@ A machine learning algorithm for classification, clustering, function
approximation, etc.

@ Motivated by how biological neural network learn and process
information.
o Cerebral cortex contains 10! neurons that are deeply connected into a
massive network.
o Each neuron is connected to 10 — 10* other neurons.
e A neuron can receive information from other neurons, process the
information, and then pass it to other neurons.

Dendrites
N

—~

Nucleus

Simple perceptron model

@ A perceptron model is the simplest, single-neuron model for
supervised learning.

@ Training data contains: inputs z;, ¢ = 1,...,l. Each x; is a n-vector;
and output d, a n-vector. The output can be continuous (regression)
or binary (classification).

@ An activation function f is specified by user for binary outcome.

3/39

Learn the perceptron model

The learning algorithm is based on gradient search to minimize the
l
squared loss: 37, (d; — yj)?, where y; = f(wo + Y, wizij).
© Initialize w's to random numbers. Then at iteration 7:
!
@ Compute y} = f(wp + Dy wi i)
© Update weights by:
+1
o wi ™ = wh 441 X7 (dy —) (2):
+1
o w™ = wl + 3 doima(dy —yp) ()@,
Here 27 = wp + S wraij. 4} and 4 are the learning rate (step
size).
Compare with regression model:
@ For continuous outcome, when f is identity function, the perceptron
model is similar to a linear regression.
e For binary outcome, when f is logit/expit function, the perceptron
model is similar to a logistic regression.

4/39

Artificial neural network

ANN is a glorified perceptron model with multiple neurons and
(optionally) multiple layers (has at least one hidden layer of neurons).

5/39

@ The neural network has input (X), output (Y'), and hidden variable
Z.

@ It works for continuous or categorial outcomes.

@ In an ANN, a mathematical neuron works the same as a perceptron.
It receives a number of inputs, computes the weighted sum and then
generate outputs through activation functions.

@ The mathematical model for an ANN for K-class classification (Y is
categorial with K classes):

2m = o(aom + LX), m=1,..., M.
Te=Box +BLZ, k=1,..., K.
k(X)) =g(T), k=1,...,K.
Here, o is “activation function”.

@ In K-class classification, usually use softmax function for g:

eTk

gk(T) = ST

@ K =1 for continuous outcome.

A little bit on the activation function

@ Determines the output of a neuron.

@ Nonlinear activation functions can turn the linear model to a
non-linear one, which can better capture the nonlinearity in the data.

@ Some activation functions (such as the sigmoid functions) can help
normalize the output of each neuron to a range between 1 and 0 or
between -1 and 1.

@ Needs to be computationally easy.

A little bit on the activation function

@ Determines the output of a neuron.

@ Nonlinear activation functions can turn the linear model to a
non-linear one, which can better capture the nonlinearity in the data.

@ Some activation functions (such as the sigmoid functions) can help
normalize the output of each neuron to a range between 1 and 0 or
between -1 and 1.

@ Needs to be computationally easy.

Often used activation functions:
@ Linear activation functions: linear function or step function.

@ Nonlinear activation functions:

e Sigmoid functions: S-shaped. Examples: logistic, tanh.
o RelLU (Rectified Linear Unit): similar to a linear spline.

Activation functions

Sigmoid functions

’
xT /
—erf(‘/T;'z) L f@ /
] V1+a? 1
tanh (z) — 2arctan (3) , g
204 (2 —_ 0.5+ 7/
zed(3) T+l
, | X X X X , , | , T
—-2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5
7 05
4
/
-1
’
’
/

Activation functions

RelLU

9/39

ANN model fitting

Numbers of parameters in an ANN are:
® apm, o M x (P+1)
® Bom, B K x (M +1)

Objective function of an ANN:

@ For continuous outcome, residual sum of squares:

K N
R(O) = (yir — fu(:))?

k=1 1i=1

@ For categorical outcome, cross-entropy (or NLL, negative log
likelihood):

K N
R(O)=->> yilog fr(w:)
k=1 i=1

Model fitting is done by “back propagation algorithm’ .

Back propagation algorithm

Essentially a gradient descent algorithm.
o Initialization: pick random weights (model parameters).
@ Forward: given weights, compute predicted values.

@ Backward: update the weights, using first derivatives as direction.
The first derivatives can be obtained using chain rule.

Detailed derivations are skipped. Please refer to ESL chpt 11.

11/39

Back propagation algorithm

Note:

@ Be careful of overfitting: the model is too flexible and has too many
parameters.

@ Regularization technique (e.g., L1 penalty) can be used to stabilize
the model fitting.

@ Number of neurons and the number of layers are set by user.

@ Compared with the perceptron model, ANN can capture highly
non-linear relationships. With adequate numbers of neurons and
hidden layers, arbitrary decision boundary can be formed.

12/39

Neural network in R

The neuralnet package in R provides functions to train a neural network.

library(neuralnet)
data(infert, package="datasets")

fit NN

fit <- neuralnet(case”parity+induced+spontaneous, infert)
predicted <- fit$net.result[[1]11>0.5

table(infert$case, predicted)

predicted

FALSE TRUE

0 143 22

1 37 46

compare with SVM

library(e1071)

fit.svm <- svm(case“parity+induced+spontaneous, infert)
predicted <- predict(fit.svm)>0.5

table(infert$case, predicted)

predicted

FALSE TRUE

0 149 16

1 43 40

Deep learning)

14 /39

Deep learning

@ Appeared quite a while ago (1980’s), but gained tremendous
attention fairly recently, mostly due to the increased computational
power and availability of large-scale training data.

@ Becomes a social buzz word, and widely applied to many fields.

Google AlphaGo beats the world champion 4-1 in a set of five GO games.

15 /39

Deep Architecture

There are different types, but the most common is the feed-forward
multilayer neural network.

Output units (g O,
Wy

v =1(z)

4= E Wit Yk
ke H2

Y=1(z)

%= E Wiy
jeH1

Hidden units H2 ()

Y =1@)

zv=2wx
" j ij Xi

ieInput

Hidden units H1 ()

Input units

16 /39

Why go deep, since one can approximate any function as close as possible
with shallow architecture?

@ Deep machines are more efficient for representing certain classes of
functions.

@ So deep architecture trades breadth for depth (more layers, but less
neurons in each layer).

@ Demo: Tensorflow Playground: http://playground.tensorflow.org/

Advantages:

@ Traditional machine learning algorithm requires feature extraction
from data: Data — Feature — Model. Finding the correct features is
critical in the success of a ML model.

@ In complex pattern recognition/prediction problem (such as
audio/image recognition, natural language processing), the input
signals are highly non-linear and feature extraction is difficult.

@ Deep learning can better capture the non-linearity in the data, thus
potentially automate the feature selection step.

17 /39

http://playground.tensorflow.org/

Example: DL in image recognition

In image recognition problem, the inputs are color intensity values for all
pixels in a picture. Tradition method that directly link pixels to outcome
doesn't work well, because the higher order interactions (patterns) are not
captured efficiently.

In deep learning (such as convolutional neural network):

@ Layer 1: presence/absence of edge at particular location and
orientation.

@ Layer 2: motifs formed by particular arrangements of edges; allows
small variations in edge locations.

@ Layer 3: assemble motifs into larger combinations of familiar objects.

o Layer 4 and beyond: higher order combinations.

Key: the layers are not designed, but learned from data using a
general-purpose learner.

18/39

Example: DL in image recognition (cont.)

Feature representation
2 %N
e RY| 3rd layer
Oahenn “Objects”

2 r ﬁ ". J-l~
. 2nd layer
“Object parts”

1st layer
”Edgesﬂ

Pixels

19/39

Train a deep neural network

Back propagation does not work well if randomly initialized.

It was shown that deep networks trained with back propagation (without
unsupervised pre-training) perform worse than shallow networks.

train. valid. test

DBN, unsupervised pre-training 0% 1.2% 1.2%
Deep net, auto-associator pre-training 0% 1.4% 1.4%
Deep net, supervised pre-training 0% 1.7% 2.0%

| Deep net, no pre-training 004% 2.1% 2.4% |
Shallow net, no pre-training 004% 1.8% 1.9%

(Bengio et al., NIPS 2007)

Problems with Back Propagation: gradient is progressively getting more
dilute below top few layers.

20 /39

Deep Network Training

Hinton et al., (2006) A fast learning algorithm for deep belief nets
proposes greedy layer-wise training for trainning a deep belief network
(DBN).

DBN is a type of deep neural network, which can be viewed as a stack of
simple, unsupervised networks such as restricted Boltzmann machines
(RBMs, similar to factor analysis).

21/39

DBN Greedy Training

Let v be the input data (visible layer).

@ First construct an RBM with input layer v and hidden layer h!. The
trained RBM provides p(h!|v).

e Obtain a set of realization of hidden layer h! (denoted by h') based
on the trained RBM. One can either sample from p(h!|v), or compute
Elp(h|v)].

o With A! and hidden layer h2, train another RBM, and so on.

@ Once all parameters are estimated, perform supervised top-down
training (backprop) to refine the parameters.

22/39

Convolutional neural network (CNNs / ConvNet)

@ ConvNet is a type of feed forward neural network.

o Widely applied to data where nearby values are correlated, for
example, images (pixel values are spatially correlated), sound
(frequencies are temporally correlated), etc.

@ The network are stacked by convolutional and pooling layers for
feature extraction.

@ The final layer of the network is a fully connected layer to connect the
extracted features to the output.

23 /39

Center element of the kernel is placed over the (0x0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

.

VL I W

Convolution kernel
(emboss)

New pixel value (destination pixel)

Pooling layers

@ After the convolution, scan the data and apply a pooling function
(usually max).

@ Reduce the size of the representation, reduce the amount of
parameters and computation, and alleviate overfitting.

@ For example, a pooling layer with filters of size 2x2 downsamples the
input by 2 along both width and height, retaining only 25% of the
data.

@ In backpropagation, one only routes the gradient to the input that
had the highest value in the forward pass. So it's important to keep
track of the index of the max activation during the forward pass of a
pooling layer.

25 /39

Pooling layers

Single depth slice

y 111124
max pool with 2x2 filters
5|16|7]|8 and stride 2 6|8
3(12(1]|0 3|4
1123 | 4
y

26 /39

ConvNet diagram

— AR
— TRUCK
— VAN

] - CTTT

— BicycLe

~

~ . FULLY
7 eyt CONVOLUTION + RELU POOLING CONVOLUTION + RELU POGLING FLAITEN B ep SOFTMAX
HIDDEN LAYERS CLASSIFICATION

https:
//www.mathworks.com /videos/introduction- to- deep- learning-what- are- convolutional- neural- networks--1489512765771.html|
@ The model learning is based on back propagation.

@ Pre-training is helpful.

@ Large number of parameters (often millions). Require large training
set.

27 /39

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html

Transfer learning

Problems in training a large ConvNet:
@ Training data is not large enough.

@ Model training requires significant computing resources.

Transfer learning

Problems in training a large ConvNet:
@ Training data is not large enough.
@ Model training requires significant computing resources.

Transfer learning:

@ “Transfer” of knowledge: knowledge gained while learning to
recognize cars could apply when trying to recognize trucks.

@ Similar to the Bayesian statistics ideas of using prior from historical
data.

@ Pre-trained networks from large training set (e.g., ImageNet, which
contains 1.2 million images with 1000 categories) can be borrowed in
different ways.

e Only retrain the last (fully-connected) layer. Previous layers are used as
fixed feature extractor.

e Train some layers while freeze others.

@ As the initial values and retrain the whole network.

28 /39

Transfer learning (cont.)

@ There are a number of pre-trained networks (VGGnet, AlexNet,
GooglLeNet, ResNet) available for transfer learning.

@ One needs to download the pre-trained network (can be big, due to
large number of paremters).

@ Most deep learning packages provide easy interface for transfer
learning.

Our experiences show that transfer learning can significantly improve the

performance, even though the image to be classified are very different
from the training ones.

29 /39

Deep learning software package

Most of the popular deep learning software packages are written in
Python, for example,

@ Tensorflow by Google: https://www.tensorflow.org.
@ PyTorch by Facebook: https://pytorch.org.

@ Theano: http://deeplearning.net/software/theano.
e Keras: https://keras.io.

The R development for deep learning lags behind, but gradually catches
up: There are a few packages:

@ MXNetR: https://mxnet.apache.org/versions/1.8.0/.
@ Other available ones on CRAN include RNN, LSTM, darch, deepnet.

30/39

https://www.tensorflow.org
https://pytorch.org
http://deeplearning.net/software/theano
https://keras.io
https://mxnet.apache.org/versions/1.8.0/

Deep learning examples

a b
S¥cYolololololoNN N rn S e =
ce|'2@®®®@@®ﬁ> |O101|_’| | |

S X JOXC X X)

CpG module_

i
Fully
) connected

i

scBS-Seq H

Pwl
DNA Conv
’%m
)

DNA module

Angermueller, C., Lee, H.J., Reik, W. et al. DeepCpG: accurate prediction of

single-cell DNA methylation states using deep learning. Genome Biol 18, 67
(2017).

31/39

Deep learning examples

2i HCC HepG2 mESC

0.85- t 0.975 l |
0.80 * 0.950 1 0:90-1

S . 0925 l +
< ’ 0.85-]
0.70 0900-{
oars | 080}

0.65

T
o0 of 49 N9 og ¢ qQ 49 ag ¢ 49 qq o:; SRR JNCY
(ﬁﬂ(jp“ « o e 0.3a°‘3 1@ & N eaoc, .L“a & C ch!(ﬁ\a & Rt

DNA module: CNN
CpG module: RNN
ReLU + sigmoid

32/39

Tesla: Autopilot by neural networks

Information from Andrej Karpathy, Al Lead at Tesla.

33/39

Goal: Fully self-driving, full autonomy(Level 5).

34/39

environment tags

o

overhead signs

<= crosswalks

.

e

road markings

A

road signs

static objects

About 50 tasks must be done on-device, simultaneously.

35/39

HydraNets: Specialized Dynamic Architectures for Efficient Inference

William R.Mark
Google Inc.

billmark@google.cem

Ravi Teja Mullapudi
CMU

rmullapu@cs.cmu.edu

Abstract

There is growing interest in improving the design of deep
network architectures to be both accurate and low cost.
This paper explores semantic specialization as a mechanism
for improving the computational efficiency (accuracy-per-
unit-cost) of inference in the context of image classifica-
tion. Specifically, we propose a network architecture tem-
plate called HydraNet, which enables state-of-the-art ar-
chitectures for image classification to be transformed into
dynamic architectures which exploit execution for efficient
inference. HydraNi k ining dis-
tinct components specialized to compute features for visu-
ally similar classes, but they retain efficiency by dynami-
cally selecting only a small number of components to eval-

are wide

Backbone: HydraNets.

Noam Shazeer
Google Inc.

noam@google. com

Kayvon Fatahalian
Stanford University

kayvonf@cs.stanford.edu

Figure 1: The HydraNet template architecture: contains
multiple branches specialized for different inputs and a gate
chooses which branches to run when performing inference
on an input, and a combiner that aggregates branch outputs
to make final predictions.

36 /39

HydraNet architecture

i H M < >\

DD[@Q

One Tesla car: process 4,096 images on-device.

W

Kol o
\/’D
B

O

k-

37/39

Deep learning is a powerful technique in the machine learning field.

So far the major areas of application include speech recognition,
image classification, natural language processing.

@ Demonstrate superior performance when there are many highly
nonlinear patterns in the data.

Application in biostatistics/bioinformatics field is relatively fewer so
far, perhaps because

o Training data size (subjects) is still too small.

o Biological knowledge, in the form of existing networks, are already
explicitly used, instead of being learned from data. They are hard to
beat with a limited amount of data.

e Lack of good inference procedure.

38/39

Textbook chapters

o ESL: chapter 11.

39/39

