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Introduction to artificial neural network (ANN or NN)

A machine learning algorithm for classification, clustering, function
approximation, etc.

Motivated by how biological neural network learn and process
information.

Cerebral cortex contains 1011 neurons that are deeply connected into a
massive network.
Each neuron is connected to 103 − 104 other neurons.
A neuron can receive information from other neurons, process the
information, and then pass it to other neurons.
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Simple perceptron model

A perceptron model is the simplest, single-neuron model for
supervised learning.

Training data contains: inputs xi, i = 1, . . . , l. Each xi is a n-vector;
and output d, a n-vector. The output can be continuous (regression)
or binary (classification).

An activation function f is specified by user for binary outcome.
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Learn the perceptron model

The learning algorithm is based on gradient search to minimize the
squared loss:

∑n
j=1(dj − yj)2, where yj = f(w0 +

∑l
i=1wixij).

1 Initialize w’s to random numbers. Then at iteration r:

2 Compute yrj = f(wr
0 +

∑l
i=1w

r
i xij).

3 Update weights by:

w
(r+1)
0 = wr

0 + γr1
∑n

j=1(dj − yrj )f ′(zrj ).
w

(r+1)
i = wr

i + γr2
∑n

j=1(dj − yrj )f ′(zrj )xij ,

Here zrj = wr
0 +

∑l
i=1w

r
i xij . γr1 and γr2 are the learning rate (step

size).

Compare with regression model:

For continuous outcome, when f is identity function, the perceptron
model is similar to a linear regression.

For binary outcome, when f is logit/expit function, the perceptron
model is similar to a logistic regression.
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Artificial neural network

ANN is a glorified perceptron model with multiple neurons and
(optionally) multiple layers (has at least one hidden layer of neurons).

11.3 Neural Networks 393

 Y Y Y 21 K

 Z Z Z1  Z2 3 m

 X X

 Z Z1  Z2 3

1  Xp X p-1 X2  X3

M

 X p-13 X2 X1 p

 Z

 Y Y Y

 X

K1 2

                                                                                                                                                

FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

Thinking of the constant “1” as an additional input feature, this bias unit
captures the intercepts α0m and β0k in model (11.5).

The output function gk(T ) allows a final transformation of the vector of
outputs T . For regression we typically choose the identity function gk(T ) =
Tk. Early work in K-class classification also used the identity function, but
this was later abandoned in favor of the softmax function

gk(T ) =
eTk

∑K
ℓ=1 eTℓ

. (11.6)

This is of course exactly the transformation used in the multilogit model
(Section 4.4), and produces positive estimates that sum to one. In Sec-
tion 4.2 we discuss other problems with linear activation functions, in par-
ticular potentially severe masking effects.

The units in the middle of the network, computing the derived features
Zm, are called hidden units because the values Zm are not directly ob-
served. In general there can be more than one hidden layer, as illustrated
in the example at the end of this chapter. We can think of the Zm as a
basis expansion of the original inputs X; the neural network is then a stan-
dard linear model, or linear multilogit model, using these transformations
as inputs. There is, however, an important enhancement over the basis-
expansion techniques discussed in Chapter 5; here the parameters of the
basis functions are learned from the data.

Figure is from ”elements of statistical learning” chapter 11, figure 11.2
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The neural network has input (X), output (Y ), and hidden variable
Z.

It works for continuous or categorial outcomes.

In an ANN, a mathematical neuron works the same as a perceptron.
It receives a number of inputs, computes the weighted sum and then
generate outputs through activation functions.

The mathematical model for an ANN for K-class classification (Y is
categorial with K classes):

zm = σ(α0m + αT
mX), m = 1, . . . ,M.

Tk = β0k + βTk Z, k = 1, . . . ,K.

fk(X) = gk(T), k = 1, . . . ,K.

Here, σ is “activation function”.

In K-class classification, usually use softmax function for g:

gk(T) =
eTk

∑
l e

Tl

K = 1 for continuous outcome.
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A little bit on the activation function

Determines the output of a neuron.

Nonlinear activation functions can turn the linear model to a
non-linear one, which can better capture the nonlinearity in the data.

Some activation functions (such as the sigmoid functions) can help
normalize the output of each neuron to a range between 1 and 0 or
between -1 and 1.

Needs to be computationally easy.

Often used activation functions:

Linear activation functions: linear function or step function.

Nonlinear activation functions:

Sigmoid functions: S-shaped. Examples: logistic, tanh.
ReLU (Rectified Linear Unit): similar to a linear spline.
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Activation functions

Sigmoid functions
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Activation functions

ReLU
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ANN model fitting

Numbers of parameters in an ANN are:

α0m, αm: M × (P + 1)

β0m, βk: K × (M + 1)

Objective function of an ANN:

For continuous outcome, residual sum of squares:

R(θ) =

K∑

k=1

N∑

i=1

(yik − fk(xi))2

For categorical outcome, cross-entropy (or NLL, negative log
likelihood):

R(θ) = −
K∑

k=1

N∑

i=1

yik log fk(xi)

Model fitting is done by “back propagation algorithm”.
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Back propagation algorithm

Essentially a gradient descent algorithm.

Initialization: pick random weights (model parameters).

Forward: given weights, compute predicted values.

Backward: update the weights, using first derivatives as direction.
The first derivatives can be obtained using chain rule.

Detailed derivations are skipped. Please refer to ESL chpt 11.
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Back propagation algorithm

Note:

Be careful of overfitting: the model is too flexible and has too many
parameters.

Regularization technique (e.g., L1 penalty) can be used to stabilize
the model fitting.

Number of neurons and the number of layers are set by user.

Compared with the perceptron model, ANN can capture highly
non-linear relationships. With adequate numbers of neurons and
hidden layers, arbitrary decision boundary can be formed.
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Neural network in R

The neuralnet package in R provides functions to train a neural network.

library(neuralnet)

data(infert, package="datasets")

## fit NN

fit <- neuralnet(case~parity+induced+spontaneous, infert)

predicted <- fit$net.result[[1]]>0.5

table(infert$case, predicted)

predicted

FALSE TRUE

0 143 22

1 37 46

## compare with SVM

library(e1071)

fit.svm <- svm(case~parity+induced+spontaneous, infert)

predicted <- predict(fit.svm)>0.5

table(infert$case, predicted)

predicted

FALSE TRUE

0 149 16

1 43 40
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Deep learning
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Deep learning

Appeared quite a while ago (1980’s), but gained tremendous
attention fairly recently, mostly due to the increased computational
power and availability of large-scale training data.

Becomes a social buzz word, and widely applied to many fields.

Google AlphaGo beats the world champion 4-1 in a set of five GO games.
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Deep Architecture

There are different types, but the most common is the feed-forward
multilayer neural network.

be seen as a kind of hilly landscape in the high-dimensional space of 
weight values. The negative gradient vector indicates the direction 
of steepest descent in this landscape, taking it closer to a minimum, 
where the output error is low on average. 

In practice, most practitioners use a procedure called stochastic 
gradient descent (SGD). This consists of showing the input vector 
for a few examples, computing the outputs and the errors, computing 
the average gradient for those examples, and adjusting the weights 
accordingly. The process is repeated for many small sets of examples 
from the training set until the average of the objective function stops 
decreasing. It is called stochastic because each small set of examples 
gives a noisy estimate of the average gradient over all examples. This 
simple procedure usually finds a good set of weights surprisingly 
quickly when compared with far more elaborate optimization tech-
niques18. After training, the performance of the system is measured 
on a different set of examples called a test set. This serves to test the 
generalization ability of the machine — its ability to produce sensible 
answers on new inputs that it has never seen during training. 

Many of the current practical applications of machine learning use 
linear classifiers on top of hand-engineered features. A two-class linear 
classifier computes a weighted sum of the feature vector components. 
If the weighted sum is above a threshold, the input is classified as 
belonging to a particular category. 

Since the 1960s we have known that linear classifiers can only carve 
their input space into very simple regions, namely half-spaces sepa-
rated by a hyperplane19. But problems such as image and speech recog-
nition require the input–output function to be insensitive to irrelevant 
variations of the input, such as variations in position, orientation or 
illumination of an object, or variations in the pitch or accent of speech, 
while being very sensitive to particular minute variations (for example, 
the difference between a white wolf and a breed of wolf-like white 
dog called a Samoyed). At the pixel level, images of two Samoyeds in 
different poses and in different environments may be very different 
from each other, whereas two images of a Samoyed and a wolf in the 
same position and on similar backgrounds may be very similar to each 
other. A linear classifier, or any other ‘shallow’ classifier operating on 

Figure 1 | Multilayer neural networks and backpropagation. a, A multi-
layer neural network (shown by the connected dots) can distort the input 
space to make the classes of data (examples of which are on the red and 
blue lines) linearly separable. Note how a regular grid (shown on the left) 
in input space is also transformed (shown in the middle panel) by hidden 
units. This is an illustrative example with only two input units, two hidden 
units and one output unit, but the networks used for object recognition 
or natural language processing contain tens or hundreds of thousands of 
units. Reproduced with permission from C. Olah (http://colah.github.io/). 
b, The chain rule of derivatives tells us how two small effects (that of a small 
change of x on y, and that of y on z) are composed. A small change Δx in 
x gets transformed first into a small change Δy in y by getting multiplied 
by ∂y/∂x (that is, the definition of partial derivative). Similarly, the change 
Δy creates a change Δz in z. Substituting one equation into the other 
gives the chain rule of derivatives — how Δx gets turned into Δz through 
multiplication by the product of ∂y/∂x and ∂z/∂x. It also works when x, 
y and z are vectors (and the derivatives are Jacobian matrices). c, The 
equations used for computing the forward pass in a neural net with two 
hidden layers and one output layer, each constituting a module through 

which one can backpropagate gradients. At each layer, we first compute 
the total input z to each unit, which is a weighted sum of the outputs of 
the units in the layer below. Then a non-linear function f(.) is applied to 
z to get the output of the unit. For simplicity, we have omitted bias terms. 
The non-linear functions used in neural networks include the rectified 
linear unit (ReLU) f(z) = max(0,z), commonly used in recent years, as 
well as the more conventional sigmoids, such as the hyberbolic tangent, 
f(z) = (exp(z) − exp(−z))/(exp(z) + exp(−z)) and logistic function logistic, 
f(z) = 1/(1 + exp(−z)). d, The equations used for computing the backward 
pass. At each hidden layer we compute the error derivative with respect to 
the output of each unit, which is a weighted sum of the error derivatives 
with respect to the total inputs to the units in the layer above. We then 
convert the error derivative with respect to the output into the error 
derivative with respect to the input by multiplying it by the gradient of f(z). 
At the output layer, the error derivative with respect to the output of a unit 
is computed by differentiating the cost function. This gives yl − tl if the cost 
function for unit l is 0.5(yl − tl)2, where tl is the target value. Once the ∂E/∂zk 
is known, the error-derivative for the weight wjk on the connection from 
unit j in the layer below is just yj ∂E/∂zk.
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Why go deep, since one can approximate any function as close as possible
with shallow architecture?

Deep machines are more efficient for representing certain classes of
functions.

So deep architecture trades breadth for depth (more layers, but less
neurons in each layer).

Demo: Tensorflow Playground: http://playground.tensorflow.org/

Advantages:

Traditional machine learning algorithm requires feature extraction
from data: Data → Feature → Model. Finding the correct features is
critical in the success of a ML model.

In complex pattern recognition/prediction problem (such as
audio/image recognition, natural language processing), the input
signals are highly non-linear and feature extraction is difficult.

Deep learning can better capture the non-linearity in the data, thus
potentially automate the feature selection step.
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Example: DL in image recognition

In image recognition problem, the inputs are color intensity values for all
pixels in a picture. Tradition method that directly link pixels to outcome
doesn’t work well, because the higher order interactions (patterns) are not
captured efficiently.

In deep learning (such as convolutional neural network):

Layer 1: presence/absence of edge at particular location and
orientation.

Layer 2: motifs formed by particular arrangements of edges; allows
small variations in edge locations.

Layer 3: assemble motifs into larger combinations of familiar objects.

Layer 4 and beyond: higher order combinations.

Key: the layers are not designed, but learned from data using a
general-purpose learner.
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Example: DL in image recognition (cont.)

5 

Different Levels of Abstraction 

• Hierarchical Learning 
– Natural progression from low 

level to high level structure as 
seen in natural complexity 
 

– Easier to monitor what is being 
learnt and to guide the machine 
to better subspaces 
 

– A good lower level 
representation can be used for 
many distinct tasks 
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Train a deep neural network

Back propagation does not work well if randomly initialized.

It was shown that deep networks trained with back propagation (without
unsupervised pre-training) perform worse than shallow networks.

9 

Deep Neural Networks 
• Simple to construct 

– Sigmoid nonlinearity for hidden layers 
– Softmax for the output layer 

• But, backpropagation does not 
work well (if randomly initialized)  
– Deep networks trained with 

backpropagation (without 
unsupervised pretraining) perform 
worse than shallow networks 

(Bengio et al., NIPS 2007) 

Problems with Back Propagation: gradient is progressively getting more
dilute below top few layers.
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Deep Network Training

Hinton et al., (2006) A fast learning algorithm for deep belief nets
proposes greedy layer-wise training for trainning a deep belief network
(DBN).
DBN is a type of deep neural network, which can be viewed as a stack of
simple, unsupervised networks such as restricted Boltzmann machines
(RBMs, similar to factor analysis).
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DBN Greedy Training

Let v be the input data (visible layer).

First construct an RBM with input layer v and hidden layer h1. The
trained RBM provides p(h1|v).
Obtain a set of realization of hidden layer h1 (denoted by h̃1) based
on the trained RBM. One can either sample from p(h1|v), or compute
E[p(h1|v)].
With h̃1 and hidden layer h2, train another RBM, and so on.

Once all parameters are estimated, perform supervised top-down
training (backprop) to refine the parameters.
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Convolutional neural network (CNNs / ConvNet)

ConvNet is a type of feed forward neural network.

Widely applied to data where nearby values are correlated, for
example, images (pixel values are spatially correlated), sound
(frequencies are temporally correlated), etc.

The network are stacked by convolutional and pooling layers for
feature extraction.

The final layer of the network is a fully connected layer to connect the
extracted features to the output.
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Pooling layers

After the convolution, scan the data and apply a pooling function
(usually max).

Reduce the size of the representation, reduce the amount of
parameters and computation, and alleviate overfitting.

For example, a pooling layer with filters of size 2x2 downsamples the
input by 2 along both width and height, retaining only 25% of the
data.

In backpropagation, one only routes the gradient to the input that
had the highest value in the forward pass. So it’s important to keep
track of the index of the max activation during the forward pass of a
pooling layer.
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Pooling layers
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ConvNet diagram

https:

//www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html

The model learning is based on back propagation.

Pre-training is helpful.

Large number of parameters (often millions). Require large training
set.
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Transfer learning

Problems in training a large ConvNet:

Training data is not large enough.

Model training requires significant computing resources.

Transfer learning:

“Transfer” of knowledge: knowledge gained while learning to
recognize cars could apply when trying to recognize trucks.

Similar to the Bayesian statistics ideas of using prior from historical
data.

Pre-trained networks from large training set (e.g., ImageNet, which
contains 1.2 million images with 1000 categories) can be borrowed in
different ways.

Only retrain the last (fully-connected) layer. Previous layers are used as
fixed feature extractor.
Train some layers while freeze others.
As the initial values and retrain the whole network.

Introduction 28 / 39



Transfer learning

Problems in training a large ConvNet:

Training data is not large enough.

Model training requires significant computing resources.

Transfer learning:

“Transfer” of knowledge: knowledge gained while learning to
recognize cars could apply when trying to recognize trucks.

Similar to the Bayesian statistics ideas of using prior from historical
data.

Pre-trained networks from large training set (e.g., ImageNet, which
contains 1.2 million images with 1000 categories) can be borrowed in
different ways.

Only retrain the last (fully-connected) layer. Previous layers are used as
fixed feature extractor.
Train some layers while freeze others.
As the initial values and retrain the whole network.

Introduction 28 / 39



Transfer learning (cont.)

There are a number of pre-trained networks (VGGnet, AlexNet,
GoogLeNet, ResNet) available for transfer learning.

One needs to download the pre-trained network (can be big, due to
large number of paremters).

Most deep learning packages provide easy interface for transfer
learning.

Our experiences show that transfer learning can significantly improve the
performance, even though the image to be classified are very different
from the training ones.
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Deep learning software package

Most of the popular deep learning software packages are written in
Python, for example,

Tensorflow by Google: https://www.tensorflow.org.

PyTorch by Facebook: https://pytorch.org.

Theano: http://deeplearning.net/software/theano.

Keras: https://keras.io.

The R development for deep learning lags behind, but gradually catches
up: There are a few packages:

MXNetR: https://mxnet.apache.org/versions/1.8.0/.

Other available ones on CRAN include RNN, LSTM, darch, deepnet.
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Deep learning examples

Angermueller, C., Lee, H.J., Reik, W. et al. DeepCpG: accurate prediction of

single-cell DNA methylation states using deep learning. Genome Biol 18, 67

(2017).
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Deep learning examples

DNA module: CNN
CpG module: RNN
ReLU + sigmoid
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Tesla: Autopilot by neural networks

Information from Andrej Karpathy, AI Lead at Tesla.

Introduction 33 / 39



Goal: Fully self-driving, full autonomy(Level 5).
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About 50 tasks must be done on-device, simultaneously.
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Backbone: HydraNets.
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HydraNet architecture

One Tesla car: process 4,096 images on-device.
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Summary

Deep learning is a powerful technique in the machine learning field.

So far the major areas of application include speech recognition,
image classification, natural language processing.

Demonstrate superior performance when there are many highly
nonlinear patterns in the data.

Application in biostatistics/bioinformatics field is relatively fewer so
far, perhaps because

Training data size (subjects) is still too small.
Biological knowledge, in the form of existing networks, are already
explicitly used, instead of being learned from data. They are hard to
beat with a limited amount of data.
Lack of good inference procedure.
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Textbook chapters

ESL: chapter 11.
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