
PQHS 471
Lecture 12: Housekeeping Utilities

in Statistical Learning

Introduction 1 / 59

Simulation: Random Number Generation, Permutation

Introduction 2 / 59

Statistical Simulation

Statistical simulation (Monte Carlo) is an important part of statistical
method research.

The statistical theories/methods are all based on assumptions. So
most theorems state something like “if the data follow these
models/assumptions, then...”.

The theories can hardly be verified in real world data because (1) the
real data never satisfy the assumption; and (2) the underlying truth is
unknown (no “gold standard”).

In simulation, data are “created” in a well controlled environment
(model assumptions) and all truth are known. So the claim in the
theorem can be verified.

Introduction 3 / 59

Random Number Generator (RNG)

Random number generator is the basis of statistical simulation. It
serves to generate random numbers from predefined statistical
distributions.

Traditional methods (flip a coin or dice) work, but can’t scale up.

Computational methods are available to generate “pseudorandom”
numbers.

Introduction 4 / 59

Random Number Generator (RNG)

The random number generation often starts from generating uniform(0,1).
The most common method: “Linear congruential generator”:

Xn+1 = (aXn + c) mod m

Here, a, c, and m are predefined numbers:

X0: random number “seed”.

a: multiplier, 1103515245 in glibc.

c: increment, 12345 in glibc.

m: modulus, 232 or 264.

Un = Xn/m is distributed as Uniform(0,1).

Introduction 5 / 59

Linear congruential generator

a = 1103515245; c = 12345; m = 2^32

n = 10000

x = numeric(n)

x[1] = 1

for(i in 2:n) {

x[i] = (a*x[i-1] + c) %% m

}

x = x/m

hist(x, 100)

Introduction 6 / 59

Random Number Generator (RNG)

A few remarks about Linear congruential generator:

The numbers generated will be exactly the same using the same seed.

Want cycle of generator (number of steps before it begins repeating)
to be large.

Don’t generate more than m/1000 numbers.

RNG in R:

set.seed is the function to specify random seed.

Read the help for .Random.seed for more description about random
number generation in R.

runif is used to generate uniform(0,1) r.v.

My recommendation: always set and save random number seed during
simulation, so that the simulation results can be reproduced.

Introduction 7 / 59

Simulate r.v. from other distributions

When the distribution has a cumulative distribution function (cdf) F,
the r.v. can be obtained by inverting the cdf (“inversion sampling”). This
is based on the theory that the cdf is distributed as Uniform (0,1):
Algorithm: Assume F is the cdf of distribution D. Given u ∼ unif(0, 1),
find a unique real number x such that F(x) = u. Then x ∼ D.

Example: exponential distribution. When x ∼ exp(λ), the cdf is
F(x) = 1− exp(−λx). The inversion of cdf is:

F−1(µ) = −log(1− µ)/λ

Then to generate exponential r.v., do:

Generate uniform(0,1) r.v. denoted by µ.

Calculate x = −log(1− µ)/λ

Introduction 8 / 59

Simulate r.v. from other distributions

When the distribution has a cumulative distribution function (cdf) F,
the r.v. can be obtained by inverting the cdf (“inversion sampling”). This
is based on the theory that the cdf is distributed as Uniform (0,1):
Algorithm: Assume F is the cdf of distribution D. Given u ∼ unif(0, 1),
find a unique real number x such that F(x) = u. Then x ∼ D.
Example: exponential distribution. When x ∼ exp(λ), the cdf is
F(x) = 1− exp(−λx). The inversion of cdf is:

F−1(µ) = −log(1− µ)/λ

Then to generate exponential r.v., do:

Generate uniform(0,1) r.v. denoted by µ.

Calculate x = −log(1− µ)/λ

Introduction 8 / 59

Example: simulate exponential r.v.

lambda=5

u = runif(1000)

x = -log(1-u) / lambda

generate from R’s function

x2 = rexp(1000, lambda)

compare

qqplot(x, x2, xlab="from inverting cdf", ylab="from rexp")

abline(0,1)

Introduction 9 / 59

Simulate random vectors

Difficulty: Generating random vectors is more difficult, because we need
to consider the correlation structure.
Solution: Generate independent r.v.’s, then apply some kind of
transformation.
Example: simulate from multivariate normal distribution MVN(µ,Σ)
Let Z be a p-vector of independent N(0, 1) r.v.’s, given p× p matrix D:

var(DTZ) = DT var(Z)D = DTD

Therefore, the simulation steps are:

1 Perform Cholesky decomposition on Σ to find D s.t. Σ = DTD.

2 Simulate Z = (z1, z2, ..., zp)
′ ∼ N(0, 1)

3 Apply transformation X = DTZ + µ

R function mvrnorm available in MASS package.

Introduction 10 / 59

Example: generate multivariate normal

specify mean and variance/covariance matrix

mu = c(0,1)

Sigma = matrix(c(1.7, 0.5, 0.5, 0.8), nrow=2)

Cholesky decomposition

D = chol(Sigma)

generate 500 Z’s.

Z = matrix(rnorm(1000), nrow=2)

transform

X = t(D) %*% Z + mu

check the means X

> rowMeans(X)

[1] -0.08976896 0.95802769

check the variance/covariance matrix of X

> cov(t(X))

[,1] [,2]

[1,] 1.7392114 0.5609027

[2,] 0.5609027 0.7380548
Introduction 11 / 59

Permutation

In statistical inference, it is important to know the distribution of
some statistics under null hypothesis (H0), so that quantities like
p-values can be derived.

The null distribution is available theoretically in some cases. For
example,assume Xi ∼ N(µ, σ2), i = 1, ..., n. Under H0 : µ = 0, we
have X̄ ∼ N(0, σ2/n). Then H0 can be tested by comparing X̄ with
N(0, σ2/n).

When null distribution cannot be obtained, it is useful to use
permutation test to “create” a null distribution from data.

Introduction 12 / 59

Permutation

The basic procedure of permutation test for H0:

Permute data under H0 for a number of times. Each time recompute
the test statistics. The test statistics obtained from the permuted
data form the null distribution.

Compare the observed test statistics with the null distribution to
obtain statistical significance.

Introduction 13 / 59

Permutation test example

Assume there are two sets of independent normal r.v.’s with the same
known variance and unknown means: Xi ∼ N(µ1, σ

2), Yi ∼ N(µ2, σ
2).

We wish to test H0 : µ1 = µ2.
Define the test statistics: t = X̄ − Ȳ . We know under the null, we have
t ∼ N(0, 2σ2/n) (assuming same sample size n in both groups). Using the
permutation test, we do:

1 Pool X and Y together, denote the pooled vector by Z.

2 Randomly shuffle Z. For each shuffling, take the first n items as the
new X (denote as X∗) and the next n items as the new Y (denoted
as Y ∗).

3 Compute t∗ = X̄∗ − Ȳ ∗.
4 Repeat steps 2 and 3 for a number of times. The result t∗’s form the

null distribution of t.

5 To compute p-values, calculate Pr(|t∗| > |t|).

Note: the random shuffling is based on H0, that X and Y are i.i.d.

Introduction 14 / 59

Example: permutation test

> x=rnorm(100, 0, 1)

> y=rnorm(100, 0.5, 1)

> t.test(x,y)

Welch Two Sample t-test

data: x and y

t = -1.9751, df = 197.962, p-value = 0.04965

> nsims=50000

> t.obs = mean(x) - mean(y)

> t.perm = rep(0, nsims)

> for(i in 1:nsims) {

+ tmp = sample(c(x,y))

+ t.perm[i] = mean(tmp[1:100]) - mean(tmp[101:200])

+ }

> mean(abs(t.obs) < abs(t.perm))

[1] 0.04814

Introduction 15 / 59

Permutation test: regression example

Under linear regression setting (without intercept) yi = βxi + εi. We
want to test the coefficient: H0 : β = 0.

Observed data are (xi, yi) pairs.

Use ordinary least square estimator for β, denote as β̂(x,y).

The permutation test steps are:

1 Keep yi unchanged, permute (change the order of) xi to obtain a
vector, denoted as x∗i .

2 Obtain estimate under the permuted data: β̂∗(x∗,y).

3 Repeat step 1 and 2. β̂∗’s form the null distribution for β̂.

4 P-value = Pr(|β̂∗| > β̂).

Note: the random shuffling of xi is based on the H0, that is there is no
association between x and y.

Introduction 16 / 59

Example: regression permutation test

> x = rnorm(100); y = 0.2 * x + rnorm(100)

> summary(lm(y~x-1))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x 0.1502 0.1050 1.431 0.156

> nsims=5000

> beta.obs = coef(lm(y~x-1))

> beta.perm = rep(0, nsims)

> for(i in 1:nsims) {

+ xstar = sample(x)

+ beta.perm[i] = coef(lm(y~xstar-1))

+ }

> mean(abs(beta.obs) < abs(beta.perm))

[1] 0.157

Introduction 17 / 59

Regularization

Introduction 18 / 59

Linear Model Selection and Regularization

Recall the linear model

Y = β0 + β1X1 + ...+ βpXp + ε.

In the lectures that follow, we consider some approaches for extending
the linear model framework.

Introduction 19 / 59

In praise of linear models!

Despite its simplicity, the linear model has distinct advantages in
terms of its interpretability and often shows good predictive
performance.

Hence we discuss some ways in which the simple linear model can be
improved, by replacing ordinary least squares fitting with some
alternative fitting procedures.

Introduction 20 / 59

Why consider alternatives to least squares?

Prediction Accuracy: especially when p > n, to control the variance.

Model Interpretability: By removing irrelevant features — that is,
by setting the corresponding coefficient estimates to zero — we can
obtain a model that is more easily interpreted. We will present some
approaches for automatically performing feature selection.

Introduction 21 / 59

Three classes of methods

Subset Selection. We identify a subset of the p predictors that we
believe to be related to the response. We then fit a model using least
squares on the reduced set of variables.

Shrinkage. We fit a model involving all p predictors, but the
estimated coefficients are shrunken towards zero relative to the least
squares estimates. This shrinkage (also known as regularization) has
the effect of reducing variance and can also perform variable selection.

Dimension Reduction. We project the p predictors into a
M-dimensional subspace, where M < p. This is achieved by
computing M different linear combinations, or projections, of the
variables. Then these M projections are used as predictors to fit a
linear regression model by least squares.

Introduction 22 / 59

Best Subset Selection

1. Let M0 denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.

2. For k = 1, 2, ...p:

(a) Fit all
(
p
k

)
models that contain exactly k predictors.

(b) Pick the best among these
(
p
k

)
models, and call it Mk. Here best

is defined as having the smallest RSS, or equivalently largest R2.

3. Select a single best model from among M0, ...,Mp using
cross-validated prediction error, Cp (AIC), BIC or adjusted R2.

Introduction 23 / 59

Example - Credit data set

For each possible model containing a subset of the ten predictors in the
Credit data set, the RSS and R2 are displayed. The red frontier tracks
the best model for a given number of predictors, according to RSS and
R2 . Though the data set contains only ten predictors, the x-axis ranges
from 1 to 11, since one of the variables is categorical and takes on three
values, leading to the creation of two dummy variables.

Introduction 24 / 59

Stepwise Selection

For computational reasons, best subset selection cannot be applied
with very large p. Why not?

Best subset selection may also suffer from statistical problems when p
is large: larger the search space, the higher the chance of finding
models that look good on the training data, even though they might
not have any predictive power on future data.

Thus an enormous search space can lead to overfitting and high
variance of the coefficient estimates.

For both of these reasons, stepwise methods, which explore a far
more restricted set of models, are attractive alternatives to best
subset selection.

Introduction 25 / 59

Forward Stepwise Selection

Forward stepwise selection begins with a model containing no
predictors, and then adds predictors to the model, one-at-a-time, until
all of the predictors are in the model.

In particular, at each step the variable that gives the greatest
additional improvement to the fit is added to the model.

Introduction 26 / 59

Forward Stepwise Selection: details

Forward Stepwise Selection

1. Let M0 denote the null model, which contains no predictors.

2. For k = 0, ...p− 1:

(a) Consider all p− k models that augment the predictors in Mk with
one additional predictor.
(b) Choose the best among these p− k models, and call it Mk+1.
Here best is defined as having smallest RSS or highest R2.

3. Select a single best model from among M0, ...,Mp using
cross-validated prediction error, Cp (AIC), BIC or adjusted R2.

Introduction 27 / 59

More on Forward Stepwise Selection

Computational advantage over best subset selection is clear.

It is not guaranteed to find the best possible model out of all 2p

models containing subsets of the p predictors. Why not? Give an
example.

Introduction 28 / 59

Credit data example

Variables Best subset Forward stepwise

One rating rating

Two rating, income rating, income

Three rating, income, student rating, income, student

Four cards, income, student, limit rating, income, student, limit

The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are
identical but the fourth models differ.

Introduction 29 / 59

Backward Stepwise Selection

Like forward stepwise selection, backward stepwise selection
provides an efficient alternative to best subset selection.

However, unlike forward stepwise selection, it begins with the full
least squares model containing all p predictors, and then iteratively
removes the least useful predictor, one-at-a-time

Introduction 30 / 59

Backward Stepwise Selection: details

Backward Stepwise Selection

1. Let Mp denote the full model, which contains p predictors.

2. For k = p, p− 1, ...1:

(a) Consider all k models that contain all but one of the predictors in
Mk, for a total of k − 1 predictors.
(b) Choose the best among these k models, and call it Mk−1. Here
best is defined as having smallest RSS or highest R2.

3. Select a single best model from among M0, ...,Mp using
cross-validated prediction error, Cp (AIC), BIC or adjusted R2.

Introduction 31 / 59

More on Backward Stepwise Selection

Like forward stepwise selection, the backward selection approach
searches through only 1 + p(p+1)

2 models, and so can be applied in
settings where p is too large to apply best subset selection.

Like forward stepwise selection, backward stepwise selection is not
guaranteed to yield the best model containing a subset of the p
predictors.

Backward selection requires that the number of samples n is larger
than the number of variables p (so that the full model can be fit).
In contrast, forward stepwise can be used even when n < p, and so is
the only viable subset method when p is very large.

Introduction 32 / 59

Choosing the Optimal Model

The model containing all of the predictors will always have the
smallest RSS and the largest R2 , since these quantities are related
to the training error.

We wish to choose a model with low test error, not a model with low
training error. Recall that training error is usually a poor estimate of
test error.

Therefore, RSS and R2 are not suitable for selecting the best model
among a collection of models with different numbers of predictors.

Introduction 33 / 59

Estimating test error: two approaches

We can indirectly estimate test error by making an adjustment to
the training error to account for the bias due to overfitting.

We can directly estimate the test error, using either a validation set
approach or a cross-validation approach, as discussed in previous
lectures.

We illustrate both approaches next.

Introduction 34 / 59

Cp, AIC, BIC, and Adjusted R2

These techniques adjust the training error for the model size, and can
be used to select among a set of models with different numbers of
variables.

The next figure displays Cp, BIC, and adjusted R2 for the best model
of each size produced by best subset selection on the Credit data set.

Introduction 35 / 59

Credit data example

Introduction 36 / 59

Now for some details

Mallow’s Cp

Cp = 1
n(RSS + 2dσ̂2).

where d is the total # of parameters used and σ̂2 is an estimate of the
variance of the error ε associated with each response measurement.

The AIC criterion is defined for a large class of models fit by
maximum likelihood:

AIC = −2 logL+ 2 · d.

where L is the maximized value of the likelihood function for the
estimated model.

In the case of the linear model with Gaussian errors, maximum
likelihood and least squares are the same thing, and Cp and AIC are
equivalent. Prove this.

Introduction 37 / 59

Details on BIC

BIC = 1
n(RSS + log(n)dσ̂2).

Like Cp, the BIC will tend to take on a small value for a model with a
low test error, and so generally we select the model that has the
lowest BIC value.

Notice that BIC replaces the 2dσ̂2used by Cp with a log(n)dσ̂2 term,
where n is the number of observations.

Since log n > 2 for any n > 7, the BIC statistic generally places a
heavier penalty on models with many variables, and hence results in
the selection of smaller models than Cp. See last figure.

Introduction 38 / 59

Adjusted R2

For a least squares model with d variables, the adjusted R2 statistic is
calculated as

Adjusted R2 = 1− RSS/(n−d−1)
TSS/(n−1) .

where TSS is the total sum of squares.

Unlike Cp, AIC, and BIC, for which a small value indicates a model
with a low test error, a large value of adjusted R2 indicates a model
with a small test error.

Maximizing the adjusted R2 is equivalent to minimizing RSS
n−d−1 .

While RSS always decreases as the number of variables in the model
increases, RSS

n−d−1may increase or decrease, due to the presence of d in
the denominator.

Unlike the R2 statistic, the adjusted R2 statistic pays a price for the
inclusion of unnecessary variables in the model. See last figure.

Introduction 39 / 59

Validation and Cross-Validation

Each of the procedures returns a sequence of models Mk indexed by
model size k = 0, 1, 2, Our job here is to select k̂. Once selected,
we will return model Mk.

We compute the validation set error or the cross-validation error for
each model Mk under consideration, and then select the k for which
the resulting estimated test error is smallest.

This procedure has an advantage relative to AIC, BIC, Cp, and
adjusted R2, in that it provides a direct estimate of the test error, and
doesn’t require an estimate of the error variance σ2 .

It can also be used in a wider range of model selection tasks, even in
cases where it is hard to pinpoint the model degrees of freedom (e.g.
the number of predictors in the model) or hard to estimate the error
variance σ2 .

Introduction 40 / 59

Validation and Cross-Validation

Each of the procedures returns a sequence of models Mk indexed by
model size k = 0, 1, 2, Our job here is to select k̂. Once selected,
we will return model Mk.

We compute the validation set error or the cross-validation error for
each model Mk under consideration, and then select the k for which
the resulting estimated test error is smallest.

This procedure has an advantage relative to AIC, BIC, Cp, and
adjusted R2, in that it provides a direct estimate of the test error, and
doesn’t require an estimate of the error variance σ2 .

It can also be used in a wider range of model selection tasks, even in
cases where it is hard to pinpoint the model degrees of freedom (e.g.
the number of predictors in the model) or hard to estimate the error
variance σ2 .

Introduction 40 / 59

Shrinkage Methods

Ridge regression and Lasso

The subset selection methods use least squares to fit a linear model
that contains a subset of the predictors.

As an alternative, we can fit a model containing all p predictors using
a technique that constrains or regularizes the coefficient estimates,
or equivalently, that shrinks the coefficient estimates towards zero.

It may not be immediately obvious why such a constraint should
improve the fit, but it turns out that shrinking the coefficient
estimates can significantly reduce their variance.

Introduction 41 / 59

Ridge regression

Recall that the least squares fitting procedure estimates β0, β1, ..., βp
using the values that minimize

RSS =

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2

In contrast, the ridge regression coefficient estimates β̂R are the
values that minimize

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

β2j

where λ ≥ 0 is a tuning parameter, to be determined separately.

Introduction 42 / 59

Ridge regression: continued

As with least squares, ridge regression seeks coefficient estimates that
fit the data well, by making the RSS small.

However, the second term, λ
∑

j β
2
j , called a shrinkage penalty, is

small when β1, ..., βp are close to zero, and so it has the effect of
shrinking the estimates of βj towards zero.

The tuning parameter λ serves to control the relative impact of these
two terms on the regression coefficient estimates.

Selecting a good value for λ is critical; cross-validation is used for this.

Introduction 43 / 59

Credit data example

Introduction 44 / 59

Details of Previous Figure

In the left-hand panel, each curve corresponds to the ridge regression
coefficient estimate for one of the ten variables, plotted as a function
of λ.

The right-hand panel displays the same ridge coefficient estimates as
the left-hand panel, but instead of displaying λ on the x-axis, we now
display ||β̂Rλ ||2/||β̂||2, where β̂ denotes the vector of least squares
coefficient estimates.

The notation ||β||2 denotes the `2 norm (pronounced “ell 2”) of a

vector, and is defined as ||β̂||2 =
√∑p

j=1 β
2
j .

Introduction 45 / 59

Ridge regression: scaling of predictors

The standard least squares coefficient estimates are scale
equivariant: multiplying Xj by a constant c simply leads to a scaling
of the least squares coefficient estimates by a factor of 1/c. In other
words, regardless of how the jth predictor is scaled, Xj β̂j will remain
the same.

In contrast, the ridge regression coefficient estimates can change
substantially when multiplying a given predictor by a constant, due
to the sum of squared coefficients term in the penalty part of the
ridge regression objective function.

Therefore, it is best to apply ridge regression after standardizing the
predictors, using the formula

x̃ij =
xij√

1
n

∑n
i=1(xij − x̄j)2

Introduction 46 / 59

The Lasso

Ridge regression does have one obvious disadvantage: unlike subset
selection, which will generally select models that involve just a subset
of the variables, ridge regression will include all p predictors in the
final model.

The Lasso is a relatively recent alternative to ridge regression that
overcomes this disadvantage. The lasso coefficients, β̂Lλ , minimize
the quantity

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj | = RSS + λ

p∑
j=1

|βj |

In statistical parlance, the lasso uses an `1 (pronounced “ell 1”)
penalty instead of an `2 penalty. The `1 norm of a coefficient vector
β is given by ||β||1 =

∑
|βj |.

Introduction 47 / 59

The Lasso: continued

As with ridge regression, the lasso shrinks the coefficient estimates
towards zero.

However, in the case of the lasso, the `1 penalty has the effect of
forcing some of the coefficient estimates to be exactly equal to zero
when the tuning parameter λ is sufficiently large.

Hence, much like best subset selection, the lasso performs variable
selection.

We say that the lasso yields sparse models — that is, models that
involve only a subset of the variables.

As in ridge regression, selecting a good value of λ for the lasso is
critical; cross-validation is again the method of choice.

Introduction 48 / 59

Example: Credit dataset

Introduction 49 / 59

The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient
estimates that are exactly equal to zero?
One can show that the lasso and ridge regression coefficient estimates
solve the problems

minimize
β

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 subject to

p∑
j=1

|βj | ≤ s

and

minimize
β

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 subject to

p∑
j=1

β2j ≤ s

, respectively.

Introduction 50 / 59

The Lasso Picture

Introduction 51 / 59

Conclusions

These two examples illustrate that neither ridge regression nor the
lasso will universally dominate the other.

In general, one might expect the lasso to perform better when the
response is a function of only a relatively small number of predictors.

However, the number of predictors that is related to the response is
never known a priori for real data sets.

A technique such as cross-validation can be used in order to
determine which approach is better on a particular data set.

Introduction 52 / 59

Selecting the Tuning Parameter for Ridge Regression and
Lasso

As for subset selection, for ridge regression and lasso we require a
method to determine which of the models under consideration is best.

That is, we require a method selecting a value for the tuning
parameter λ or equivalently, the value of the constraint s.

Cross-validation provides a simple way to tackle this problem. We
choose a grid of λ values, and compute the cross-validation error rate
for each value of λ.

We then select the tuning parameter value for which the
cross-validation error is smallest.

Finally, the model is re-fit using all of the available observations and
the selected value of the tuning parameter.

Introduction 53 / 59

Credit data example

Left: Cross-validation errors that result from applying ridge regression to
the Credit data set with various values of λ.
Right: The coefficient estimates as a function of λ. The vertical dashed
lines indicates the value of λ selected by cross-validation.

Introduction 54 / 59

Simulated data example

Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse
simulated data set from Slide 41.
Right: The corresponding lasso coefficient estimates are displayed. The
vertical dashed lines indicate the lasso fit for which the cross-validation
error is smallest.

Introduction 55 / 59

Dimension Reduction Methods

The methods that we have discussed so far in this chapter have
involved fitting linear regression models, via least squares or a
shrunken approach, using the original predictors, X1, X2, ..., Xp.

We now explore a class of approaches that transform the predictors
and then fit a least squares model using the transformed variables.
We will refer to these techniques as dimension reduction methods.

Introduction 56 / 59

Dimension Reduction Methods: details

Let Z1, Z2, ..., ZM represent M < p linear combinations of our
original p predictors. That is,

Zm =

p∑
j=1

φmjXj (1)

for some constants φm1, ..., φmp.

We can then fit the linear regression model,

yi = θ0 +

M∑
m=1

θmzim + εi, i = 1, ..., n, (2)

using ordinary least squares.

Note that in model (2), the regression coefficients are given by
θ0, θ1, ..., θM . If the constants φm1, ..., φmp are chosen wisely, then
such dimension reduction approaches can often outperform OLS
regression.

Introduction 57 / 59

Notice that from definition (1),

M∑
m=1

θmzim =

M∑
m=1

θm

p∑
j=1

φmjxij =

p∑
j=1

M∑
m=1

θmφmjxij =

p∑
j=1

βjxij ,

where

βj =

M∑
m=1

θmφmj (3)

Hence model (2) can be thought of as a special case of the original
linear regression model.

Dimension reduction serves to constrain the estimated βj coefficients,
since now they must take the form (3).

Can win in the bias-variance tradeoff.

Introduction 58 / 59

Regularization summary

Model selection methods are an essential tool for data analysis,
especially for big datasets involving many predictors.

Research into methods that give sparsity, such as the lasso is an
especially hot area.

Introduction 59 / 59

