PQHS 471 Lecture 13: Good Statistical Practice

The Lady Tasting Tea

- It was a summer afternoon in Cambridge, England, in the 1920s.
- A groups of university dons, their wifes, and some guests were having afternoon tea.
- A lady was insisting that tea tasted different depending upon whether *the tea was poured into the milk* OR *the milk was poured into the tea*.

Fisher in 1913

- "Sheer nonsense", the scientific minds among the men scoffed at this.
- A thin, short man, with thick glasses, Ronald Fisher, pounced on the problem: "Let us test the proposition!"

The Lady Tasting Tea

DAVID SALSBURG

"Entertaining... The pleasures of the book emerge easily... and the end result is both educational and fun."—Nature Medicine

Copyrighted Material

э

イロト イヨト イヨト イヨト

- Fisher's notion of a null hypothesis
 - Null hypothesis
 - Popularize p-value
- Neyman-Pearson Lemma
 - Error of the 2nd kind
 - Alternative/competing hypothesis
 - Power function

- Statistical Methods for Research Workers
- The Design of Experiments

John Wilder Tukey

"... is that you get to play in everyone's backyard."

Misuse of p-value

- Q: Why do so many colleges and grad schools teach p = 0.05?
- A: Because that's still what the scientific community and journal editors use.
- Q: Why do so many people still use p = 0.05?
- A: Because that's what they were taught in college or grad school.

Misuse of p-value

- Q: Why do so many colleges and grad schools teach p = 0.05?
- A: Because that's still what the scientific community and journal editors use.
- Q: Why do so many people still use p = 0.05?
- A: Because that's what they were taught in college or grad school.

"We teach it because it's what we do; we do it because it's what we teach."

"Personally, the writer prefers to set a low standard of significance at 5 percentage point... A scientific fact should be regarded as experimentally established only if a properly designed experiment rarely fails to give this level of significance."

The American Statistician

ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: https://www.tandfonline.com/loi/utas20

The ASA Statement on *p*-Values: Context, Process, and Purpose

Ronald L. Wasserstein & Nicole A. Lazar

To cite this article: Ronald L. Wasserstein & Nicole A. Lazar (2016) The ASA Statement on p-Values: Context, Process, and Purpose, The American Statistician, 70:2, 129-133, DOI: 10.1080/00031305.2016.1154108

To link to this article: https://doi.org/10.1080/00031305.2016.1154108

・ロト・西ト・西ト・西・ うくぐ

10 / 16

Which(s) of the following statements is/are reasonable?

- p-value is a probability.
- p > 0.05 is the probability that the null hypothesis is true.
- 1 minus the p-value is the probability that the alternative hypothesis is true.
- A statistically significant test result ($p \le 0.05$) means that the test hypothesis is false or should be rejected.
- A p-value greater than 0.05 means that no effect was observed.

Informally, a p-value is the probability **under a specified statistical model** that a statistical summary of the data (e.g., the sample mean difference between two compared groups) would be *equal to or more extreme* than its observed value.

12/16

Six principles of p-value

- 1. P-values can indicate how incompatible the data are with a specified statistical model.
 - The most common context is a model (under a set of assumptions): H_0

— Often H_0 postulates the absence of an effect (e.g. no difference between two groups)

— The smaller the p-value, the greater the incompatibility of the data with ${\cal H}_0$

— Incompatibility casting doubt on H_0

< ロト < 同ト < ヨト < ヨト

Six principles of p-value

- 1. P-values can indicate how incompatible the data are with a specified statistical model.
 - The most common context is a model (under a set of assumptions): H_0

— Often H_0 postulates the absence of an effect (e.g. no difference between two groups)

— The smaller the p-value, the greater the incompatibility of the data with ${\cal H}_0$

- Incompatibility casting doubt on H_0
- 2. P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.
 - Never turn a p-value into a statement about the truth of H_0

— p-value is a statement about the **relationship** between the data and H_0 , NOT about the **explanation** (H_0) itself.

Six principles of p-value (cont'd)

• 3. Scientific conclusions and business or policy decisions should NOT be based only on whether a p-value passes a specific threshold.

— "bright-line" rule (e.g. p < 0.05 alone) can lead to erroneous beliefs and poor decision making.

— A conclusion does not immediately become "true" on one side of the divide and "false" on the other.

— Researchers should bring many contextual factors into play to derive scientific inferences, including the design of a study, the quality of the measurements, the external evidence for the phenomenon under study, and the validity of assumptions that underlie the data analysis. — Using p < 0.05 alone as a license for making a claim of a scientific finding leads to considerable distortion of the scientific process.

イロト イ理ト イヨト イヨト

Six principles of p-value (cont'd)

- 3. Scientific conclusions and business or policy decisions should NOT be based only on whether a p-value passes a specific threshold.
 - "bright-line" rule (e.g. p < 0.05 alone) can lead to erroneous beliefs and poor decision making.

— A conclusion does not immediately become "true" on one side of the divide and "false" on the other.

— Researchers should bring many contextual factors into play to derive scientific inferences, including the design of a study, the quality of the measurements, the external evidence for the phenomenon under study, and the validity of assumptions that underlie the data analysis. — Using p < 0.05 alone as a license for making a claim of a scientific finding leads to considerable distortion of the scientific process.

- 4. Proper inference requires full reporting and transparency

 number of hypotheses explored, all data collection decisions, all statistical analyses conducted
 - No "cherry-picking"

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国

- 5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.
 - $pval \neq effect size$
 - Statistical sig. vs. biological sig.

- 5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.
 - $pval \neq effect size$
 - Statistical sig. vs. biological sig.
- 6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

• Good statistical practice is an integral part of good scientific practice.

— study design and conduct, summaries of data, understanding of the phenomenon under study, interpretation of results in context, complete reporting, proper logical understanding of results. • Good statistical practice is an integral part of good scientific practice.

— study design and conduct, summaries of data, understanding of the phenomenon under study, interpretation of results in context, complete reporting, proper logical understanding of results.

• No single index should substitute for scientific reasoning.

16/16