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Syllabus

@ Primary Instructor
e Hao Feng, Ph.D.
o Assistant Professor, Population and Quantitative Health Sciences, Case
School of Medicine
o Email: hxf155@case.edu
o Office hour: Thursday 3:45-4:30pm.
o Office: Robbins Building E-208.
@ Research Interests
e Biostatistics, Bioinformatics, High-throughput Data, -omics.
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Co-Instructors

o Leslie Meng

e Postdoctoral fellow in Epidemiology and Biostatistics
o Email: gxm324@case.edu
o Office hour: Wednesday 10:00 - 10:45am over Zoom (see Canvas)

@ Daoyu Duan

e PhD student in Epidemiology and Biostatistics
o Email: dxd429@case.edu
o Office hour: Wednesday 2:00 - 2:45pm over Zoom (see Canvas)
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Syllabus(cont'd)

o Class Time
o Tuesday & Thursday, Jan/14/2025 - Apr/24/2025
e 2:30PM - 3:40PM
@ 6 ~ 7 sessions will be hands-on programming lab sessions (laptop
required).
@ Key Dates

Jan 28, NO class (In observance of Lunar New Year)
Mar 6, Midterm Exam (In-class, close book)

Mar 11, NO class (Spring break)

Mar 13, NO class (Spring break)

Mar 25, NO class (ENAR conference)

April 24 is the last day of class
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Syllabus(cont'd)

@ Prerequisites:
o PQHS 431: Statistical Methods I.
@ Nice-to-haves:
o Additional knowledge in Linear Algebra, Basic Probability and

Statistical Inference are extremely helpful for a thorough understanding
of algorithms introduced in this course.
e Evaluation:

e Homework (65%): Six sets of unequally-weighted, applied, R
programming-based assignments. Due dates and submission method
will be announced with assignments. Late homework submission: 15%
penalty upfront + additional 10% penalty each day.

o Midterm exam (25%): In class, closed book.

o Class participation (10%): Class attendance will be taken periodically.
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Academic Integrity

Students are expected to complete all homework assignments ALONE,
without collaboration with others. However, consulting the TAs is allowed.
Students are expected to uphold standards of academic integrity.
Procedures will be taken for academic misconduct:

@ https://case.edu/gradstudies/sites/case.edu.
gradstudies/files/2018-04/
SGS-Academic-Integrity-Policies—-and-Rules.pdf

@ https:

//case.edu/gradstudies/about-school/policies-procedures
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Syllabus(cont'd)

@ Textbook:
e James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An
introduction to statistical learning. 2nd edition. Springer.
o FREE! https://www.statlearning.com/
o Free PDF copy also available on Canvas.

Spr

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

with Applicationsin R

4 Springer
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Syllabus(cont'd)

Other references:

@ The Elements of Statistical Learning (2nd edition) Hastie, Tibshirani
and Friedman (2009). Springer-Verlag.
FREE! https://web.stanford.edu/~hastie/ElemStatLearn/

@ Computer Age Statistical Inference: Algorithms, Evidence and Data
Science
https://web.stanford.edu/~hastie/CASI/

@ Deep Learning
https://www.deeplearningbook.org/
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Syllabus(cont'd)

o Topics:
e Dimension Reduction
o Similarity measures, k-means, Hierarchical Clustering
o Frequent Pattern Mining
o Fundamentals in Supervised Learning
o Decision Tree, Bayes Classifier, KNN
o GLM, LDA, QDA
e Cross-Validation and Bootstrap
o Tree and Forest, Tree based method
o Bagging, Boosting
e Support Vector Machines
o Neural Network
o (intro) Deep Learning

Introduction Jan 14, 2025 9/43



Supervised vs. Unsupervised

X : independent variables, predictors, explanatory variables
y : dependent variables, outcomes, response variables

Supervised Learning Unsupervised Learning
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Supervised vs. Unsupervised

Supervised learning __,  >Classification
"direct data mining” »Estimation
»Prediction

N\

Machine Learning
/Data mining

/

Unsupervised leaming __, > Clustering

"indirect data mining” »>Association rules
»Description, dimension
reduction and
visualization

Semi-supervised learning

!Modified from Figure 1.1 from Data Clustering by Gan, Ma and Wu
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Supervised Learning

In supervised learning, the problem is well-defined:
@ Given a set of observations X, Y
e Estimate the density Pr(Y,X)

@ Usually the goal is to find the model/parameters to minimize a loss,
L(Y, f(X))
@ A common loss is the Expected Prediction Error:

EPE(f) = E(Y - f(X))?

@ Objective Criteria exist to measure the success of a supervised
learning method
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Unsupervised Learning

In unsupervised learning, there is no output variable, all we observe is a set

X.
The goal is to infer Pr(X) and/or some of its properties. There is no

objective criteria from the data themself
@ Heuristic arguments
@ External information
@ Evaluate based on properties of the data
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Classification

Classification

The general scheme.

An example.

"salmon® "sea bass”

FIGURE 1.1. The objects to be classified are first sensed by a transducer (camera),
whose signals are preprocessed. Next the features are extracted and finally the clas-
sification is emitted, here either “salmon” or “sea bass.” Although the information flow
is often chosen to be from the source to the classifier, some systems employ information
flow in which earlier levels of processing can be altered based on the tentative or pre-
liminary response in later levels (gray arrows). Yet others combine two or more stages
into a unified step, such as simultanecus segmentation and feature extraction. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
(© 2001 by John Wiley & Sons, Inc.
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Classification

Classification

salmon sea bass
In most cases, a single 22 1
feature is not enough to

generate a good

classifier.
length
5 o - 5 20 25
M saleson sea bass | IGURE 1.2, Histograms for the length feature for the two categories. No single thresh-

old value of the length will serve to unambiguously discriminate between the two cat-
egories; using length alone, we will have some errors. The value marked I* will lead to
the smallest number of errors, on average. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

lightness

2 4

[ 5 o

FIGURE 1.3. Histograms for the lightness feature for the two categories. No single
threshold value x* (decision boundary) will serve to unambiguously discriminate be-
tween the two categories; using lightness alone, we will have some errors. The value x*
marked will lead to the smallest number of errors, on average. From: Richard O. Duda,
Peter E. Han, and David G. Stork, Pattern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.
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Classification

width
Classification 2 salmon . sea bass
E -
Two extremes: wp et :
. 19 t .
overly rigid and C :
. 18 .
overly flexible P : .
classifiers. e
15 .0
14 lightess
2 4 6 8 i
FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark
line could serve as a decision boundary of our classifier. Overall classification error on
| the data shown is lower than if we use only one feature as in Fig. 1.3, but there will
':':"” still be some errors. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
=< salinon 4 Classification. Copyright @ 2001 by John Wiley & Sons, Inc.
af vt .«
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are complicated. While such a decision may lead to perfect classification of our training
samples, it would lead to poor performance on future patterns. The novel test point
marked ? is evidently most likely a salmon, whereas the complex decision boundary
shown leads it to be classified as a sea bass. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Cop: it © 2001 by John Wiley &
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Classification

Classification
Goal: an optimal trade-off between model simplicity and training
set performance.

This is similar to the AIC/BIC / ...... model selection in
regression.

lightness

[
S

8 10

FIGURE 1.6. The decision boundary shown might represent the optimal tradeoff be-
tween performance on the training set and simplicity of classifier, thereby giving the
highest accuracy on new patterns. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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Classification

Classification

A classification
project:

prior knowledge —

{e.g., invariances)
\\

a systematic view.

train classifier

evaluate classifier

end

FIGURE 1.8. The design of a pattern recognition system involves a design cycle similar
to the one shown here. Data must be collected, both to train and to test the system. The
characteristics of the data impact both the choice of appropriate discriminating features
and the choice of models for the different categories. The training process uses some or
all of the data to determine the system parameters. The results of evaluation may call
for repetition of various steps in this process in order to obtain satisfactory results. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright

© 2001 by John Wiley & Sons, Inc.
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Wage Prediction
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Wage Prediction
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Left panel: wage ~ age

wage increases with age, but decrease after 60

Use the blue curve to predict wage using age

significant amount of variability around average wage value
“Age” alone is insufficient for an accurate prediction.
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Wage Prediction
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Mid panel: wage ~ year
Around $10k wage increase per year on average under linear model
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Wage Prediction
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Right panel: wage ~ education
(1) — no high school diploma (5) — Advanced graduate degree
Men with higher education levels tend to have higher wagers
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Wage Prediction
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Ideally, more accurate wage prediction of wage can be obtained by
combining age, year and education.
Consider non-linear modeling: polynomial regression, spline, Generalized
Additive Models (GAM)
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Gene Expression Data Clustering
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Dataset NCI60: A matrix of 6,830 gene expression measurements for each
of 64 cancer cell lines.

Are there any groups (clusters), among the cell lines based on their gene
expression measurements?
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Gene Expression Data Clustering
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Principal Component Analysis was adopted
Z71: 1st PC dimension; Zs: 2nd PC dimension
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Gene Expression Data Clustering
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Left: Potentially 4 data-driven clusters
Right: 14 types of cancer labeled (external information)
Cell lines with same cencer type tend to be located near each other
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A brief history of statistical learning

Early 1800: method of least squares by Legendre and Gauss. Now
a.k.a. linear regression

e First applied in astronomy
e Robust, easy to interpret, powerful

1936: linear discriminant analysis by Fisher

1940s: logistic regression

1970s: generalized linear models (GLM) Nelder and Wedderburn
1980s: Improved computing power enables non-linear methods

1980s: classification and regression trees, cross-validation

1990s: R language, continuous improvement in computing
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The Era of Big Data

“We are drowning in information, while starving for wisdom. " l
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The Era of Big Data

“We are drowning in information, while starving for wisdom. "

Andreas Buja

“There is no true interpretation of anything; interpretation is a vehicle in
the service of human comprehension. The value of interpretation is in
enabling others to fruitfully think about an idea.”

Introduction Jan 14, 2025 28 /43



Four premises of this course

Many statistical learning methods are relevant and useful in a wide range
of academic and non-academic disciplines, beyond just the statistical
sciences.
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Four premises of this course

Many statistical learning methods are relevant and useful in a wide range
of academic and non-academic disciplines, beyond just the statistical
sciences.

Statistical learning should not be viewed as a series of black boxes.

While it is important to know what job is performed by each cog, it is not
necessary to have the skills to construct the machine inside the box!
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Four premises of this course

Many statistical learning methods are relevant and useful in a wide range
of academic and non-academic disciplines, beyond just the statistical
sciences.

Statistical learning should not be viewed as a series of black boxes.

While it is important to know what job is performed by each cog, it is not
necessary to have the skills to construct the machine inside the box!

Remember to apply statistical learning methods to real-world problems.
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Review of Linear Algebra
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@ n: sample size, # of observations
@ p: # of variables

For example, in the wage dataset, we have n = 3,000 people and p = 12
variables (such as year, age, education, and more)
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@ Scalar: ONE numerical value alone
o 5,100, = 3,000, a2
@ Vector: A vector of length n is denoted as a = (a;)n

a
a2

an,
o If all elements in a vector are 1, the vector is denoted as 1,

@ We will stick to the convention that a vector is always a column
vector.
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e Matrix: m x n matrix with elements a;; is denoted as A = (aj)mxn

aix v Qlp
A =
aml - Omn
o Diagonal Matrix:

al 0 0
0 ag 0
diag(ay,ag,...,an) = _ .
0O O an
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e ldentity Matrix: I, := diag(1,1,...,1)
10
01
I, =

_ o O O

00
e Matrix Transpose: If A = (a;j)mxn, then AT is an n x m matrix,
where al-Tj = aj;

ail ai2 e Aln ail a1 - am1

aai a2 e a2n a2 a2 - am?2
A= ] ) ) ) , then AT =

aml AaAm2 - Omn Qln A2n " Amn
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@ Matrix Transpose example:

1 5
12 6 r |1 2 3 4
If A= 3 7 ,thenA—[5678]
4 8

o Symmetric Matrix: If A = AT then A is symmetric.

1 9 5 6
A = 9267 is a symmetric matrix
|5 6 3 8 y '

6 7 8 4
Apparently, identity matrix and diagonal matrix are always
symmetric matrices.
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e Matrix Sum: If A = (ajj)mxn and B = (b;;j)mxn then
A + B = (aij + bij)mxn
e Matrix Product: If A = (ajj)mxn and B = (bjj)nxp, then
AB = (¢ij)mxp
where

n
cij =Y airby
k=1

e Matrix products satisfy (AB)T = BTAT
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1 7 10
A—[4 ]andB— 8 11 | Then
9 12
- 7 10
AB = }1 g 2 } 8 11
- 9 12

[ 1x74+2x843%x9 1x10+2x11+3x12
| 4XT7T+5%x8+6x9 4x10+5x11+6x12
_'50 68

| 122 167

It is only possible to compute AB if :
# of columns in A = # of rows in B
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Matrix Inverse

e Matrix Inverse Definition: An n x n matrix A is invertible (or
non-singular) if there is a matrix A~! such that AA™! = A~'A =1,

@ An n X n matrix A is invertible if and only if rank(A) =n
e Inverse of Product: (AB)™!' = B~'A~!if A and B are invertible
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Vector Product, Norm and Orthogonality

@ Inner Product:

aTb = Z aibi
7

where a = (a;) and b = (b;) are vectors with the same length.

@ Vector norm:
|la]| = VaTa

e Orthogonal vectors: a = (a;) and b = (b;) are orthogonal vectors if
a'b = 0 (i.e. they are perpendicular)
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Vector Product, Norm and Orthogonality

@ Inner Product:

aTb = Z aibi
7

where a = (a;) and b = (b;) are vectors with the same length.
@ Vector norm:
lal| = vaTa

e Orthogonal vectors: a = (a;) and b = (b;) are orthogonal vectors if
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Eigenvalue and Eigenvectors

@ Definition: Given an n x n matrix A, then if a scalar A and a vector
u satisfy
Au=)\u

then u is called an eigenvector of A, with associated eigenvalue .

o Intuition: Eigenvector is a direction in multidimensional space. The
linear transformation, A, can't rotate this direction like on others.
Instead, A can only stretch/squeeze/reverse this direction.
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Eigenvalue and Eigenvectors

Basic Properities:

Let matrix A be a n X n square matrix with rank(A) = n.

Define a square matrix Q = (u1, ug, ..., un), whose columns are the n
linearly independent eigenvectors of A .

Define diagonal matrix A = diag(A1, A2, ..., A), where each diagonal
element is the eigenvalue associated with the each column of Q. Then
from the basic defination we have:

AQ=QA

Because the columns of Q are linearly independent, Q is full rank and
thus invertible. Right multiplying both sides by Q~1:

A=QAQ?
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Textbook chapters

Textbook:
ISLR: An Introduction to Statistical Learning: with applications in R

@ ISLR chapter 1 & 2
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