PQHS 471

Lecture 2: Unsupervised Learning (1)
Dimension Reduction




Recap: Supervised vs. Unsupervised

X : independent variables, predictors, explanatory variables
y : dependent variables, outcomes, response variables

Supervised Learning Unsupervised Learning
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Unsupervised Learning

e unsupervised learning: we observe on the features Xy, X», ..., X,,. We
are not interested in prediction, because we do NOT have an
associated response variable Y.

@ supervised learning: we observe both a set of features X1, X, ..., X,
for each object, as well as a response or outcome varaible Y. The
goal is then to predict Y using X1, Xo,..., X, .

@ In this semester, we will start with unsupervised learning and move on
to supervised learning later.
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The Goals of Unsupervised Learning

@ Discover interesting things about the measurements: is there an
informative way to visualize the data? Can we discover subgroups
among the variables or among the observations?

@ We will mainly discuss:

e Dimension Reduction: a set of tools used for data visualization or data
pre-processing (typically before supervised techniques are applied).

o Clustering: a broad class of methods for discovering unknown
subgroups in data.
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The Challenge of Unsupervised Learning

@ No simple goal (such as prediction of a response), more subjective
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The Challenge of Unsupervised Learning

@ No simple goal (such as prediction of a response), more subjective

@ But techniques for unsupervised learning are of growing importance in
a number of field:

e personalized medicine: subgroups of colon cancer patients grouped by
their gene expression values — targeted therapy.

e marketing: groups of shoppers characterized by their browsing and
purchase histories.

e recommendation system: recommend movies to movie viewers grouped
by their movie ratings/likes/dislikes



The Challenge of Unsupervised Learning

@ No simple goal (such as prediction of a response), more subjective

@ But techniques for unsupervised learning are of growing importance in
a number of field:

e personalized medicine: subgroups of colon cancer patients grouped by
their gene expression values — targeted therapy.
e marketing: groups of shoppers characterized by their browsing and
purchase histories.
e recommendation system: recommend movies to movie viewers grouped
by their movie ratings/likes/dislikes
@ One advantage: unlabeled data are easier to obtain than labeled data

o unlabeled data: lab instrument, online via the cloud, internet of
things(loT), “big data”
o labeled data: human intervention, disease diagnosis, cancer types, etc.



Dimension Reduction

The purpose of dimension reduction:
@ data simplification
@ data visualization
@ reduce noise (if we can assume only the dominating dimensions are
signal)
@ variable selection for prediction
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Principal Components Analysis (PCA)

@ PCA is one of most classic algorithms for dimension reduction.

@ PCA produces a low-dimensional representation of a dataset. It
finds a sequence of linear combinations of the variables that have
maximal variance, and are mutually uncorrelated.

@ Apart from producing derived variables for use in supervised learning
problems in potential later steps, PCA also serves as a tool for data

visualization.



PCA — 1st principal component

@ The first principal component of a set of features X1, Xo,..., X}, is
the normalized linear combination of the features

z1 = o1 X1 + ¢aXo+ ... + 9p1 Xp

that has the largest variance. By normalized, we mean ||¢1|| =1 (i.e.
P2
=105 = 1)
o We refer to the elements ¢11, @21, ..., Pp1 as the loadings of the first
principal component; together, the loadings make up the principal
component loading vector

b1 = (11, D215 s Bp1) "

@ We constrain the loadings so that their sum of squares is equal to 1,
since otherwise arbitrarily large loadings simply result in arbitrarily
large variance.



PCA: example
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@ x-axis: population, y-axis: ad spending
@ “new x-axis": green solid line (i.e. 1st principal component)

@ “new y-axis”: blue dashed line (i.e. 2nd principal component)
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Computation of PCA

@ Suppose we have a n X p dataset X.

o PCA: Explain the variance-covariance structure among a set of
random variables by a few linear combinations of the variables.
@ Treating the p columns as random variables, we have a p x 1 random
vector x
o cov(x) = E[(x — B[x])(x — E[x])T] = Spxp
e Y,xp is the variance-covariance matrix of X
o X,p is symmetric and positive-definite (p.d.)
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Computation of PCA

e First PC:
o1 XT that maximize var(¢] XT), subject to ¢pT 1 =1
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Computation of PCA

e First PC:
o1 XT that maximize var(¢] XT), subject to ¢pT 1 =1

o it PC:
¢LXT that maximize var(p; X7T), subject to ¢ ¢p; = 1 and
cov(pF XT, pf XT) = 0,Vk < i
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Computation of PCA

@ The solution: X's eigenvalue-eigenvector pairs (\;, ¢;), where
M>A>--2>2X2>0,i=1,2,..,p
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Computation of PCA

@ The solution: X's eigenvalue-eigenvector pairs (\;, ¢;), where
M>A>--2>2X2>0,i=1,2,..,p

e the it" PC:

zi=¢; X"
Var(z;) = ¢f Seps = \i
Cov(zi, zy) = ¢ Nepp, = 0,0 # k
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PCA

@ The eigenvalues are the variance components:

P
o11+o2+ ... top = Z Var(x;)

i=1

p
:)\1+)\2+---+)\p:ZVa7“(zi)

i=1
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PCA

@ The eigenvalues are the variance components:

P
o11+o2+ ... top = Z Var(x;)

i=1

p
:)\1+)\2+---+)\p:ZVa7“(zi)

i=1

@ Proportion of total variance explained by the i* PC:

i
AL+ A2+ Ay
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PCA geometric explanation




PCA fun reading: big family dinner

Your great-grandmother: ‘I heard you are studying ‘Pee-See-Ay’. | wonder
what that is...”

Imagine a big family dinner, where everybody starts asking you about PCA. First you explain it to
your great-grandmother; then to you grandmother; then to your mother; then to your spouse;

1563 finally, to your daughter (who is a mathematician). Each time the next person is less of a layman.
Here is how the conversation might go.

V Great-grandmother: | heard you are studying "Pee-See-Ay". | wonder what that is...

You: Ah, it's just a method of summarizing some data. Look, we have some wine bottles standing
here on the table. We can describe each wine by its colour, by how strong it is, by how old it is,
and so on (see this very nice visualization of wine properties taken from here). We can compose
a whole list of different characteristics of each wine in our cellar. But many of them will measure
related properties and so will be redundant. If so, we should be able to summarize each wine with
fewer characteristics! This is what PCA does.
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PCA fun reading: big family dinner
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579

PCA data scaling

@ Using correlation matrix instead of covariance matrix?
e This is equivalent to first standardizing all « vectors
o
r = ——
Oi4
@ Using the correlation matrix avoids the domination from one x
variable due to scaling (unit changes), for example using inch instead
of foot.

17 /51



PCA data scaling example

Data scaling is recommended (and often necessary) to avoid the
domination of certain variables. Example (inch vs foot):

1 4 1 04
21{4 100]’22[0.4 1 ]

PCA from Xi:
A1 = 100.16, ¢ = (0.040,0.999)
A2 = 0.84, 3 = (0.999, —0.040)
A1
=0.99
A1+ Ao
PCA from Xo:

A = 1.4, 1 = (0.707,0.707)
A2 = 0.6, 03 = (0.707, —0.707)




PCA example

@ USAarrests data: For each of the 50 states in the US, the dataset
contains the number of arrests per 100,000 residents for each of the
three crimes: Assault, Murder, and Rape. It also has the variable
UrbanPop, the percent of the population in each state living in urban
areas.

@ principal component loading vectors have length p =4

o PCA was performed after standardizing each variable to have
mean =0 and s.d. =1

19/51



USAarrests data: PCA plot
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USAarrests data: scaling matters

If the variables are in different units(scales), mean-centering (mean = 0)
and scaling (sd = 1) is recommended.
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PCA finds the hyperplane closest to the observations

It defines a hyperplane in the p-dimensional space that is closest to the n
observations.
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Proportion Variance Explained

The proportion of variance explained (PVE) by each principal component:

A .
m,Where)\l 2)\22"'2)\1)20,2:1,2,...,]9

Then how many PCs to retain? Look for “elbow” and “plateau’”!
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Assumption: the small amount of variation explained by low-rank PCs is
noise.
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In high-dimensional genomics data, loadings of a single PC on 10,000
genes doesn’'t make much sense. To obtain “sparse” loadings, and make
the interpretation easier, and the model more robust:

SCoTLASS

N x p data matrix X a;‘:(XTX)ak,

subject to
afag =1 and(for k>2) alar=0, h<k;

and the extra constraints

P
D lawil <t
j=1
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Projection pursuit

@ A very broad term: finding the most “interesting” direction of
projection. How the projection is done depends on the definition of
“interesting” . If it is maximal variation, then PP leads to PCA.

@ In a narrower sense:

e Finding non-Gaussian projections. Why?
o Because: For most high-dimensional clouds, most low-dimensional
projections are close to Gaussian, but important information in the

data is in the directions for which the projected data could be far from
Gaussian.
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Projection pursuit

Figure 3.1: Example directions of significant structure. Directions of high kurtosis (left) and multi-
modality (right) are two examples of “interesting” directions in the space.

It boils down to objective functions — each kind of “interesting” has its
own objective function to maximize.



Projection pursuit

PCA

Projection pursuit with multi-modality as objective.
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Projection pursuit

One objective function to measure multi-modality:

Ru(@) = $ Fl(ew)’] - {B(aw)’]

It uses the first three moments of the distribution.

It can help finding clusters through visualization.
Can think of PCA as a special case of PP.



Independent Component Analysis (ICA)

Statistical Independence

For any functions ¢;() and g2(),
Elg1(xi)g2(x;5)] — Elg1 ()| Elg2 ()] = 0, for i # j

@ In PCA, lack of correlation does NOT indicate statsitical
independence.
@ Lack of correlation only determines the 2nd-degree cross-moment.

e Compare with PCA, ICA finds the factors(directions) that are
statistically independent, rather than just uncorrelated.
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ICA

@ In ICA, the latent variables are assumed to be independent and
non-Gaussian.

Source Signals Measured Signals
/] ~ /
S|~
N N =
14
|
e | - - -
PCA Solution ICA Solution
= — —
| P -
[ J -~ L - L L

@ Since for multivariate Gaussian, uncorrelatedness = independence, if
the true hidden factors are Gaussian, they can still be determined only
up to a rotation.



Non-negative Matrix Factorization )
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Non-negative Matrix Factorization (NMF)

Problem setup:

Given a non-negative matrix V, find non-negative matrices W and H such
that:
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Non-negative Matrix Factorization (NMF)

Problem setup:
Given a non-negative matrix V, find non-negative matrices W and H such
that:

Va~WH
History:
© Originally proposed in chemometrics to extract information from
chemical systems in the 1970s.

@ Later became well-known after Lee & Seung (Nature, 1999; NIPS,
2001) proposed algorithms to conduct NMF and studied their
statistical properties.

© Gained popularity recently among computer vision, audio signal
processing, bioinformatics, etc.
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Factorization details

Factorization:
o Factorize m x n matrix V' into an m x r matrix W and r x n matrix
H.
@ Usually r is chosen to be smaller than n, such that W and H are
smaller than original matrix V.

Interpretation:
@ NMF can be rewritten by column as:

v~ Wh

where v and h are the corresponding columns of V' and H.
@ Each data vector v is approximated by a linear combination of the
columns of W, weighted by the components of h.
e W: Optimized basis vectors for the linear approximation of the data in
V' — columns of W spans the low dimensional space.
e H: Weights for the linear combination on basis W — the coordinates of
the projection in the low dimensional space.
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Heterogeneous mixture

@ Human tissues have diverse cell types/states.

e Traditional RNA-seq ( “bulk” RNA-seq) can measure averaged signal
across millions of cells.

@ Single-cell RNA-seq (scRNA-seq) give us the first data-driven
approach to study the heterogeneous tissue at single-cell level.

Lawson et al. Nature. https://www.nature.com/articles/s41556-018-0236-7
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NMF cost functions

@ To find an approximate factorization V =~ W H, one need to define
the cost function to quantify the quality of approximation.

@ The measure of distance between two non-negative matrices A and B
can be useful.

@ Commonly, the square of the Euclidean distance between A and B is
adopted:

|A = B|I> =) (Ai; — By)?
ij
Therefore, we can formulate NMF as the following optimization
problem:

Problem:

e Minimize ||V — W H||? with respect to W and H, subject to the
constraints W, H > 0
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e Although ||V — W H||? is convex in W only or H only, it is not
convex in both variables together.

@ Therefore, one can not expect an algorithm finding the global minima.

@ Gradient descent is the simple technique to find at least the local
minima.



General NMF algorithm

Input Non-negative matrix V' € R’"*" and factorization rank 7.
Output W, H>0st. VaWH

Algorithm:
O (Starting point) Generate some initial matrices W () > 0 and
@ (lteration) For ¢t =1,2,... do

(VH(til)T)ik
(W(tfl)H(tfl)H(tfl)T)ik

i =i

HY — gtv (WEDTV)
kj kj (W(tfl)Tw(tfl)H(tfl))kj

forallie{1,2,...m}, j€{1,2,...,n}, ke {1,2,...,r}.
© (Stop criteria) Stop iteration if W and H are at a stationary point.



NMF in R programming

The NMF package provide functions (nmf) to solve NMF problems.
R Documentation
nmf {NMF}
Running NMF algorithms
Description
The function nmf is a S4 generic defines the main interface to run
NMF algorithms within the framework defined in package NMF.
It has many methods that facilitates applying, developing and testing

NMF algorithms.

The package vignette vignette(’NMF’) contains an introduction to the
interface, through a sample data analysis.

Usage

nmf (x, rank, method, ...)



Example: NMF in R

> library (NMF)

# random data
x <- rmatrix(20,10)

# run default algorithm with rank 2
res <- nmf (x, 2)

# The result is an object of classNMFfit
> fit (res)

<Object of class:NMFstd>

features: 20

basis/rank: 2

samples: 10




Example: NMF in R

> library (NMF)

# random data
x <- rmatrix(20,10)

# run default algorithm with rank 2
res <- nmf (x, 2)

# The result is an object of classNMFfit
> fit (res)

<Object of class:NMFstd>

features: 20

basis/rank: 2

samples: 10




Example: NMF in R

# get matrix W using basis () function
w <- basis (res)

dim (w)

[1] 20 2

# get matrix H using coef () function
h <- coef (res)

dim(h)

[1] 2 10

# Additionally, several build-in algorithms are available to choose frc
# use (method) argument to specify algorithm
> nmfAlgorithm()
[1] "brunet" "KL" "lee" "Frobenius" "offset" "nsNME
[7] "ls—nmf" "pe-nmf" "SiNME" "snmf/r" "snmf/1"

# for example

res <- nmf (x, 2, method = "lee")




NMF Application 1: Image processing

Guillamet et al. (Artificial Intelligence, 2002) conducted facial feature
extraction. Each column of data matrix X € RY" is a vectorized
gray-level image of a face, with (i, 7)th entry of X being the intensity of
the ith pixel in the jth face.

Xt o~ > W k) Hk,j) = WH(J)
—— et —— ——— ——
jth facial image facial features importance of features approximation
= g in jth image of jth image
s B s P A
W'Y [ )|
S E - slw
- = M|
- ' e
- i
S =P
- —~
s -~
= i m =

Columns in TW: Basis images (mouth, nose, mustache etc.), after convert
back to matrix of the same size as face pictures.
H: Weights of basis images.
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NMF Application 2: Composition of complex tissues

Y a

Original data matrix w
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Li et al. Genome Biology 2019




NMF Application 3: Individual-level signal decomposition
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Temporal RNA-seq Data




NMF Application 4: Gene expression

Brunet et al. (PNAS, 2004) Metagenes and molecular pattern discovery
using matrix factorization.

Deconvolute gene expression data (A) into metagene profiles (W) and
proportions (H).

A (rank M) = W H (rank k=2)

M observables
M samples

nmms H'H'l K s

7
o
=
@

2
g

2
T

metagene expression profile

samples

A
v

Class1 Class 2
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NMF Application 5: DNA methylation

Houseman et al. (BMC Bioinformatics, 2016): deconvolutes DNA
methylation data (V") into cell-type specific profile (M) and cell-type

proportions (7).

Cell-type specific

DNA methylation o Observe‘d DNA
CpG-specific profiles methylation data
annotation
data

- Specimen-specific
cell-type proportions

— CpGs

Specimen-specific
5/ phenotypic metadata



NMF Application 6: MOFA

Oliver Stegle (Genome Biology, 2020): Multi-Omics Factor Analysis

(MOFA): reconstructs a low-dimensional representation of single-cell
multi-modal data.
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NMF readings

Lee, D. D., Seung, H. S. (1999). Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755), 788.

Lee, D. D., Seung, H. S. (2001). Algorithms for non-negative matrix
factorization. Advances in neural information processing systems
(pp. 556-562).

Brunet et al. (2004) Metagenes and molecular pattern discovery
using matrix factorization. PNAS, 101 (12) 4164-4169;

Houseman, E. A. et al. (2016). Reference-free deconvolution of DNA
methylation data and mediation by cell composition effects. BMC
bioinformatics, 17(1), 259.

Stein-O'Brien G. L. et al. (2018). Enter the matrix: factorization
uncovers knowledge from omics. Trends in Genetics.
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Textbook chapters

Textbook:
ISLR: An Introduction to Statistical Learning: with applications in R
@ ISLR chapter 12: 12.1, 12.2

Additional readings (optional):
ESL: The Elements of Statistical Learning
@ ESL chapter 14: 14.1, 145 - 14.7
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