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Lecture 2: Unsupervised Learning (1)

Dimension Reduction
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Recap: Supervised vs. Unsupervised

X : independent variables, predictors, explanatory variables
y : dependent variables, outcomes, response variables
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Unsupervised Learning

unsupervised learning: we observe on the features X1, X2, ..., Xp. We
are not interested in prediction, because we do NOT have an
associated response variable Y .

supervised learning: we observe both a set of features X1, X2, ..., Xp

for each object, as well as a response or outcome varaible Y . The
goal is then to predict Y using X1, X2, ..., Xp .

In this semester, we will start with unsupervised learning and move on
to supervised learning later.
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The Goals of Unsupervised Learning

Discover interesting things about the measurements: is there an
informative way to visualize the data? Can we discover subgroups
among the variables or among the observations?

We will mainly discuss:

Dimension Reduction: a set of tools used for data visualization or data
pre-processing (typically before supervised techniques are applied).
Clustering: a broad class of methods for discovering unknown
subgroups in data.
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The Challenge of Unsupervised Learning

No simple goal (such as prediction of a response), more subjective

But techniques for unsupervised learning are of growing importance in
a number of field:

personalized medicine: subgroups of colon cancer patients grouped by
their gene expression values → targeted therapy.
marketing: groups of shoppers characterized by their browsing and
purchase histories.
recommendation system: recommend movies to movie viewers grouped
by their movie ratings/likes/dislikes

One advantage: unlabeled data are easier to obtain than labeled data

unlabeled data: lab instrument, online via the cloud, internet of
things(IoT), “big data”
labeled data: human intervention, disease diagnosis, cancer types, etc.
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Dimension Reduction

The purpose of dimension reduction:

data simplification

data visualization

reduce noise (if we can assume only the dominating dimensions are
signal)

variable selection for prediction
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Principal Components Analysis (PCA)

PCA is one of most classic algorithms for dimension reduction.

PCA produces a low-dimensional representation of a dataset. It
finds a sequence of linear combinations of the variables that have
maximal variance, and are mutually uncorrelated.

Apart from producing derived variables for use in supervised learning
problems in potential later steps, PCA also serves as a tool for data
visualization.
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PCA — 1st principal component

The first principal component of a set of features X1, X2, ..., Xp is
the normalized linear combination of the features

z1 = φ11X1 + φ21X2 + ...+ φp1Xp

that has the largest variance. By normalized, we mean ||φ1|| = 1 (i.e.∑p
j=1 φ

2
j1 = 1)

We refer to the elements φ11, φ21, ..., φp1 as the loadings of the first
principal component; together, the loadings make up the principal
component loading vector

φ1 = (φ11, φ21, ..., φp1)
T

We constrain the loadings so that their sum of squares is equal to 1,
since otherwise arbitrarily large loadings simply result in arbitrarily
large variance.
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PCA: example

x-axis: population, y-axis: ad spending

“new x-axis”: green solid line (i.e. 1st principal component)

“new y-axis”: blue dashed line (i.e. 2nd principal component)
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Computation of PCA

Suppose we have a n× p dataset X.

PCA: Explain the variance-covariance structure among a set of
random variables by a few linear combinations of the variables.

Treating the p columns as random variables, we have a p× 1 random
vector x

cov(x) = E[(x− E[x])(x− E[x])T] = Σp×p
Σp×p is the variance-covariance matrix of X
Σp×p is symmetric and positive-definite (p.d.)
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Computation of PCA

First PC:
φT
1X

T that maximize var(φT
1X

T), subject to φT
1φ1 = 1

ith PC:
φT
i X

T that maximize var(φT
i X

T), subject to φT
i φi = 1 and

cov(φT
i X

T,φT
kX

T) = 0, ∀k < i
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Computation of PCA

The solution: Σ’s eigenvalue-eigenvector pairs (λi,φi), where
λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, i = 1, 2, ..., p

the ith PC:

zi = φT
i X

T

V ar(zi) = φT
i Σφi = λi

Cov(zi, zk) = φT
i Σφk = 0, i 6= k
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PCA

The eigenvalues are the variance components:

σ11 + σ22 + ...+ σpp =

p∑
i=1

V ar(xi)

= λ1 + λ2 + · · ·+ λp =

p∑
i=1

V ar(zi)

Proportion of total variance explained by the ith PC:

λi
λ1 + λ2 + · · ·+ λp
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PCA geometric explanation

Introduction 14 / 51



PCA fun reading: big family dinner

Your great-grandmother: “I heard you are studying ‘Pee-See-Ay’. I wonder
what that is...”
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PCA fun reading: big family dinner

Picture taken from: Click this stackexchange post link
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579


PCA data scaling

Using correlation matrix instead of covariance matrix?

This is equivalent to first standardizing all x vectors

x
′

=
x− µi√
σii

Using the correlation matrix avoids the domination from one x
variable due to scaling (unit changes), for example using inch instead
of foot.
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PCA data scaling example

Data scaling is recommended (and often necessary) to avoid the
domination of certain variables. Example (inch vs foot):

Σ1 =

[
1 4
4 100

]
,Σ2 =

[
1 0.4

0.4 1

]
PCA from Σ1:

λ1 = 100.16,φT
1 = (0.040, 0.999)

λ2 = 0.84,φT
2 = (0.999,−0.040)

λ1
λ1 + λ2

= 0.99

PCA from Σ2:
λ1 = 1.4,φT

1 = (0.707, 0.707)

λ2 = 0.6,φT
2 = (0.707,−0.707)

λ1
λ1 + λ2

= 0.7
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PCA example

USAarrests data: For each of the 50 states in the US, the dataset
contains the number of arrests per 100,000 residents for each of the
three crimes: Assault, Murder, and Rape. It also has the variable
UrbanPop, the percent of the population in each state living in urban
areas.

principal component loading vectors have length p = 4

PCA was performed after standardizing each variable to have
mean = 0 and s.d. = 1
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USAarrests data: PCA plot
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USAarrests data: scaling matters

If the variables are in different units(scales), mean-centering (mean = 0)
and scaling (sd = 1) is recommended.
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PCA finds the hyperplane closest to the observations

It defines a hyperplane in the p-dimensional space that is closest to the n
observations.
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Proportion Variance Explained

The proportion of variance explained (PVE) by each principal component:
λk

λ1+λ2+···+λp , where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, i = 1, 2, ..., p
Then how many PCs to retain? Look for “elbow” and “plateau”!

Assumption: the small amount of variation explained by low-rank PCs is
noise.
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Sparse PCA

In high-dimensional genomics data, loadings of a single PC on 10,000
genes doesn’t make much sense. To obtain “sparse” loadings, and make
the interpretation easier, and the model more robust:
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Projection pursuit

A very broad term: finding the most “interesting” direction of
projection. How the projection is done depends on the definition of
“interesting”. If it is maximal variation, then PP leads to PCA.

In a narrower sense:

Finding non-Gaussian projections. Why?
Because: For most high-dimensional clouds, most low-dimensional
projections are close to Gaussian, but important information in the
data is in the directions for which the projected data could be far from
Gaussian.
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Projection pursuit

It boils down to objective functions – each kind of “interesting” has its
own objective function to maximize.
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Projection pursuit

Projection pursuit with multi-modality as objective.
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Projection pursuit

One objective function to measure multi-modality:

Rw(x) =
1

3
E[(xw)3]− 1

4
E2[(xw)2]

It uses the first three moments of the distribution.

It can help finding clusters through visualization.

Can think of PCA as a special case of PP.
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Independent Component Analysis (ICA)

Statistical Independence

For any functions g1() and g2(),
E[g1(xi)g2(xj)]− E[g1(xi)]E[g2(xj)] = 0, for i 6= j

In PCA, lack of correlation does NOT indicate statsitical
independence.

Lack of correlation only determines the 2nd-degree cross-moment.

Compare with PCA, ICA finds the factors(directions) that are
statistically independent, rather than just uncorrelated.
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ICA

In ICA, the latent variables are assumed to be independent and
non-Gaussian.

Since for multivariate Gaussian, uncorrelatedness = independence, if
the true hidden factors are Gaussian, they can still be determined only
up to a rotation.
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Non-negative Matrix Factorization
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Non-negative Matrix Factorization (NMF)

Problem setup:
Given a non-negative matrix V , find non-negative matrices W and H such
that:

V ≈WH

History:

1 Originally proposed in chemometrics to extract information from
chemical systems in the 1970s.

2 Later became well-known after Lee & Seung (Nature, 1999; NIPS,
2001) proposed algorithms to conduct NMF and studied their
statistical properties.

3 Gained popularity recently among computer vision, audio signal
processing, bioinformatics, etc.
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Factorization details

Factorization:

Factorize m× n matrix V into an m× r matrix W and r × n matrix
H.

Usually r is chosen to be smaller than n, such that W and H are
smaller than original matrix V .

Interpretation:

NMF can be rewritten by column as:

v ≈Wh

where v and h are the corresponding columns of V and H.
Each data vector v is approximated by a linear combination of the
columns of W , weighted by the components of h.

W : Optimized basis vectors for the linear approximation of the data in
V – columns of W spans the low dimensional space.
H: Weights for the linear combination on basis W – the coordinates of
the projection in the low dimensional space.
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Heterogeneous mixture

Human tissues have diverse cell types/states.

Traditional RNA-seq (“bulk” RNA-seq) can measure averaged signal
across millions of cells.

Single-cell RNA-seq (scRNA-seq) give us the first data-driven
approach to study the heterogeneous tissue at single-cell level.

Lawson et al. Nature. https://www.nature.com/articles/s41556-018-0236-7
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NMF cost functions

To find an approximate factorization V ≈WH, one need to define
the cost function to quantify the quality of approximation.

The measure of distance between two non-negative matrices A and B
can be useful.

Commonly, the square of the Euclidean distance between A and B is
adopted:

||A−B||2 =
∑
ij

(Aij −Bij)2

Therefore, we can formulate NMF as the following optimization
problem:

Problem:

Minimize ||V −WH||2 with respect to W and H, subject to the
constraints W , H ≥ 0
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Properties

Although ||V −WH||2 is convex in W only or H only, it is not
convex in both variables together.

Therefore, one can not expect an algorithm finding the global minima.

Gradient descent is the simple technique to find at least the local
minima.
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General NMF algorithm

Input Non-negative matrix V ∈ Rm×n
+ and factorization rank r.

Output W , H ≥ 0 s.t. V ≈WH

Algorithm:

1 (Starting point) Generate some initial matrices W (0) ≥ 0 and
H(0) ≥ 0;

2 (Iteration) For t = 1, 2, ... do

W
(t)
ik = W

(t−1)
ik

(V H(t−1)T )ik
(W (t−1)H(t−1)H(t−1)T )ik

H
(t)
kj = H

(t−1)
kj

(W (t−1)TV )kj

(W (t−1)TW (t−1)H(t−1))kj

for all i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}, k ∈ {1, 2, ..., r}.
3 (Stop criteria) Stop iteration if W and H are at a stationary point.
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NMF in R programming

The NMF package provide functions (nmf) to solve NMF problems.
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Example: NMF in R
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Example: NMF in R
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Example: NMF in R
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NMF Application 1: Image processing

Guillamet et al. (Artificial Intelligence, 2002) conducted facial feature
extraction. Each column of data matrix X ∈ Rp×n+ is a vectorized
gray-level image of a face, with (i, j)th entry of X being the intensity of
the ith pixel in the jth face.

Columns in W : Basis images (mouth, nose, mustache etc.), after convert
back to matrix of the same size as face pictures.
H: Weights of basis images.
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NMF Application 2: Composition of complex tissues

Li et al. Genome Biology 2019
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NMF Application 3: Individual-level signal decomposition
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NMF Application 4: Gene expression

Brunet et al. (PNAS, 2004) Metagenes and molecular pattern discovery
using matrix factorization.
Deconvolute gene expression data (A) into metagene profiles (W ) and
proportions (H).

the genes (rather than the samples) according to the entries of
W. We do not focus on this view here, but it is clearly of great
interest.

NMF provides a natural way to cluster genes and samples,
because it involves factorization into matrices with nonnegative
entries. By contrast, principal component analysis provides a
simple way to reduce dimensionality but requires that the
matrices be orthogonal, which typically requires linear combi-
nation of components with arbitrary signs. NMF is more difficult
algorithmically because of the nonnegativity requirement but
provides a more intuitive decomposition of the data.

NMF Algorithm. Given a positive matrix A of size N ! M and a
desired rank k, the NMF algorithm iteratively computes an
approximation A " WH, where W and H are nonnegative
matrices with respective sizes N ! k and k ! M. The method
starts by randomly initializing matrices W and H, which are
iteratively updated to minimize a divergence functional. The
functional is related to the Poisson likelihood of generating A
from W and H, D # $i,j Ai,jlog(Ai,j!(WH)i,j) % Ai,j & (WH)i,j. At
each step, W and H are updated by using the coupled divergence
equations (10):

Hau 4 Hau

"
i

WiaAiu!'WH(iu

"
k

Wka

Wia 4 Wia

"
u

HauAiu!'WH(iu

"
v

Hav

A simpler version of the NMF update equations that minimizes
the norm of the residual ##A-WH##2 has also been derived in ref.
10. When applying the method to a medulloblastoma dataset

(see Results), where we knew the underlying substructure, we
observed that the divergence-based update equations were able
to capture a subclass that the norm-based update equations did
not. This is why our implementation of NMF uses the divergence
form (see Data Sets and software).

Model Selection. For any rank k, the NMF algorithm groups the
samples into clusters. The key issue is to tell whether a given rank
k decomposes the samples into ‘‘meaningful’’ clusters. For this
purpose, we developed an approach to model selection that
exploits the stochastic nature of the NMF algorithm. It is
based on our group’s previous work on consensus clustering
(11) but adds a quantitative evaluation for robustness of the
decomposition.

The NMF algorithm may or may not converge to the same
solution on each run, depending on the random initial condi-
tions. If a clustering into k classes is strong, we would expect that
sample assignment to clusters would vary little from run to run.
(Note that sample assignment depends only on the relative
values in each column of H.)

For each run, the sample assignment can be defined by a
connectivity matrix C of size M ! M, with entry cij # 1 if samples
i and j belong to the same cluster, and cij # 0 if they belong to
different clusters. We can then compute the consensus matrix, C! ,
defined as the average connectivity matrix over many clustering
runs. (We select the number of runs by continuing until C!
appears to stabilize; we typically find that 20–100 runs suffice in
the applications below.) The entries of C! range from 0 to 1 and
reflect the probability that samples i and j cluster together. If a
clustering is stable, we would expect that C will tend not to vary
among runs, and that the entries of C! will be close to 0 or 1. The
dispersion between 0 and 1 thus measures the reproducibility of
the class assignments with respect to random initial conditions.
By using the off-diagonal entries of C! as a measure of similarity
among samples, we can use average linkage HC to reorder the
samples and thus the rows and columns of C! .

We then evaluate the stability of clustering associated with a
given rank k. Although visual inspection of the reordered matrix
C! can provide substantial insight (see Fig. 3), it is important to
have quantitative measure of stability for each value of k. We
propose a measure based on the cophenetic correlation coeffi-
cient, !k(C! ), which indicates the dispersion of the consensus
matrix C! . !k is computed as the Pearson correlation of two
distance matrices: the first, I-C! , is the distance between samples
induced by the consensus matrix, and the second is the distance
between samples induced by the linkage used in the reordering
of C! . In a perfect consensus matrix (all entries # 0 or 1), the
cophenetic correlation coefficient equals 1. When the entries are
scattered between 0 and 1, the cophenetic correlation coefficient
is ) 1. We observe how !k changes as k increases. We select
values of k where the magnitude of the cophenetic correlation
coefficient begins to fall (see below).

Results
We illustrate the use of NMF and our model selection criteria
with three problems in elucidating cancer subtypes. The first
involves acute leukemia, the second medulloblastoma, and the
third a collection of central nervous system tumors.

Leukemia Data Set. The distinction between acute myelogenous
leukemia (AML) and acute lymphoblastic leukemia (ALL), as
well as the division of ALL into T and B cell subtypes, is well
known. In an early gene expression analysis of cancer (5), we
explored how SOM could rediscover these distinctions in a data
set of 38 bone marrow samples (12). Here, we reuse this data set
to compare various clustering methods with respect to their
efficacy and stability in recovering these three subtypes and their
hierarchy. We note that this data set has become a benchmark

Fig. 1. A rank-2 reduction of a DNA microarray of Ngenes and M samples is
obtained by NMF, A " WH. For better visibility, H and W are shown with
exaggerated width compared with original data in A, and a white line
separates the two columns of W. Metagene expression levels (rows of H) are
color coded by using a heat color map, from dark blue (minimum) to dark red
(maximum). The same data are shown as continuous profiles below. The
relative amplitudes of the two metagenes determine two classes of samples,
class 1 and class 2. Here, samples have been ordered to better expose the class
distinction.

Brunet et al. PNAS # March 23, 2004 # vol. 101 # no. 12 # 4165
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NMF Application 5: DNA methylation

Houseman et al. (BMC Bioinformatics, 2016): deconvolutes DNA
methylation data (Y ) into cell-type specific profile (M) and cell-type
proportions (ΩT ).
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NMF Application 6: MOFA

Oliver Stegle (Genome Biology, 2020): Multi-Omics Factor Analysis
(MOFA): reconstructs a low-dimensional representation of single-cell
multi-modal data.
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NMF readings

Lee, D. D., Seung, H. S. (1999). Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755), 788.

Lee, D. D., Seung, H. S. (2001). Algorithms for non-negative matrix
factorization. Advances in neural information processing systems
(pp. 556-562).

Brunet et al. (2004) Metagenes and molecular pattern discovery
using matrix factorization. PNAS, 101 (12) 4164-4169;

Houseman, E. A. et al. (2016). Reference-free deconvolution of DNA
methylation data and mediation by cell composition effects. BMC
bioinformatics, 17(1), 259.

Stein-O’Brien G. L. et al. (2018). Enter the matrix: factorization
uncovers knowledge from omics. Trends in Genetics.
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Textbook chapters

Textbook:
ISLR: An Introduction to Statistical Learning: with applications in R

ISLR chapter 12: 12.1, 12.2

Additional readings (optional):
ESL: The Elements of Statistical Learning

ESL chapter 14: 14.1, 14.5 - 14.7
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