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Lecture 3: Unsupervised Learning (2)

Clustering
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Clustering

Clustering: A very broad set of techniques for finding subgroups, or
clusters, in a dataset.

We seek a partition of the data into distinct groups so that the
observations within each group are homogeneous.

To make this concrete, we must define what it means for two or more
observations to be similar or different.

This is often a domain-specific consideration that must be made
based on knowledge of the data being studied.

Introduction 2 / 40



Similar or Different?

The most common choice for the measurement of similarity between two
random vectors: Squared Euclidean Distance
Suppose we have two n× 1 vectors x1 and x2, the Squared Euclidean
Distance is defined as:

d(x1,x2) = ||x1 − x2||2 =
n∑

i=1

(x1i − x2i)2

This requires all the features be standardized in advance.
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pop quiz

a = (0, 3, 1, 4)T

x1 = (1, 2, 1, 5)T

x2 = (−1, 3, 3, 2)T

For x1 and x2, who is closer to a?

d(a,x1) = 12 + 12 + 02 + 12 = 3

d(a,x2) = 12 + 02 + 22 + 22 = 9

x1 and a are more similar.
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Aside: PCA vs Clustering

PCA looks for a low-dimensional representation of the observations
that explains a good fraction of the variance.

Clustering looks for homogeneous subgroups among the observations.

Introduction 5 / 40



Two classic clustering methods

K -means clustering: an iterative method to partition the observations
into a pre-specified number (K) of clusters.

hierarchical clustering: unknown number of clusters in advance, we
end up with a tree-like visualization of the observations.

A tree-like visualization of the observations is called a dendrogram.
Allow us to view at once the clusterings obtained for each possible
number of clusters, from 1 to n.
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K -means clustering

n = 150, p = 2
The colored labels were not used in clustering; instead, they are the
outputs of the K -means algorithm.
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centroid

Definition: A centroid of a cluster is a point (location) x0 that minimize

1

|C|
∑
i∈C
||xi − x0||2

, its average squared Euclidean distance from all the observations in the
cluster.
Here, |C| denotes the number of observations in the cluster C.
The centroid is often defined as the average 1

|C|
∑

i∈C xi
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K -means clustering

For the K -means clustering method, we need to have:
1 a measure of dissimilarity, d(xi,xj between any two points, xi and

xj ;
2 a definition of centroid for any set of data points;
3 a number K, the target number of subsets.

Given a cluster, the within-cluster heterogeneity can be defined as

W (C) =
1

|C|
∑
i,j∈C

d(xi,xj)

Goal: Given K, find a partition of data so that the total within-cluster
heterogeneity W (C) is minimized.

Goal (more rigorously): Given a partition of data, let {C1, ..., CK} be the
sets of indices for the partition. Then the goal is:

minimize{C1,...,CK}

K∑
k=1

W (Ck)
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K -means clustering

K-means algorithm:

1 Randomly assign the observations to K classes (every class needs to
have at least one observation).

2 Iterate the following two steps:

Update centroids: Calculate the centroids for the K classes.
Update membership: Re-assign every observation to the class
represented by the centroid “closest” to it (i.e., that centroid that has
the smallest d from the observation).

3 Once converged (i.e., there is no change in membership or centroids),
record the partition and its

∑
kW (Ck).

4 Repeat 1–3 multiple times. Select the partition with the smallest∑
kW (Ck).
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K -means example
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Algorithm progress for the example above

The progress of the K -means algorithm with K=3.

Top left: The observations are shown.

Top center: In Step 1 of the algorithm, each observation is randomly
assigned to a cluster.

Top right: In Step 2(a), the cluster centroids are computed. These
are shown as large colored disks. Initially the centroids are almost
completely overlapping because the initial cluster assignments were
chosen at random.

Bottom left: In Step 2(b), each observation is assigned to the nearest
centroid.

Bottom center: Step 2(a) is once again performed, leading to new
cluster centroids.

Bottom right: The results obtained after 10 iterations.
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Properties of K -means

K -means is a greedy algorithm: it is guaranteed to decrease the value
of the objective function AT EACH STEP.

However it is not guaranteed to give the global minimum.

Algorithm step 4 increase our chance to hit the global minimum.

Adding features may bring more information (if they are informative)
or dilute information (if they are noisy).

K is a hyperparameter based upon domain knowledge.
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Example: different starting values

Red numbers above each panel are objective function values, the overall
within-cluster heterogeneity.
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Hierarchical Clustering
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Hierarchical Clustering

A disadvantage of K -means: requires pre-specify the number of
clusters, K.

Hierarchical clustering offers an alternative approach that does not
require a particular choice of K.

A tree that is upside-down: dendrogram is built starting from the
leaves and combining clusters up to the trunk.

It is a bottom-up or agglomerative clustering method.
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Hierarchical Clustering Algorithm

1 Start with each point in its own cluster.

2 Identify the closest two clusters and merge them.

3 Repeat.

4 Ends when all points are in a single cluster.
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Hierarchical Clustering Algorithm(Intuitive)

45 observations in 2D space.

Data generated using 3 distinct clusters, in separate colors.

We’ll treat the clusters AS UNKNOWN for hierarchical clustering.
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where to ‘cut’ the tree
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define the cluster-wise dissimilarity

We already have a concept of the dissimilarity between two observations,
but we haven’t define that for two clusters.
We need to define the dissimilarity between two groups of observations.
We call d(Ci, Cj) as linkage.
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define linkage
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choice of linkage
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choice of linkage

Average, complete, and single linkage are most popular among
statisticians.

Average and complete linkage tend to yield more balanced
dendrograms.

Centroid is often used in genomics, but can suffer from inversion (two
clusters are fused at a height below either of the individual clusters in
the dendrogram.)

The resulting dendrogram depends quite strongly on the type of
linkage used.
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Exercise

Suppose we have 5 observations, for which we have already computed a
similarity (distance) matrix as follows:

Now, using this similarity matrix, sketch the dendogram that results from
hierarchically clustering these 5 observations using complete linkage.
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Hierarchical Clustering Algorithm

1 Start from n singletons (a singleton is a subset containing a single
observation).

2 Repeat the following until a single set is reached:
1 Among all the current subsets, merge the two subsets that have the

smallest d(Ci, Cj).
2 Record that d(Ci, Cj).

3 Use a threshold value for d(Ci, Cj) to cut the tree to obtain branches
as clusters.
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Choice of Dissimilarity Measure

So far have used Euclidean distance.
An alternative is correlation-based distance: two observations to are
similar if their features are highly correlated.
Correlation-based distance focuses on the ‘shape’ of the observation
profiles rather than their magnitudes
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Choice of Dissimilarity Measure example

An online retailer interested in clustering shoppers based on their past
shopping histories.

To identify subgroups of similar shoppers, for targeted advertisements.

Data matrix:

rows are the shoppers and the columns are the items available for
purchase
elements of the data matrix = the number of times a given shopper
has purchased a given item

What type of dissimilarity measure should be used?
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Choice of Dissimilarity Measure example

Euclidean distance? Then infrequent shoppers will be clustered
together.

Correlation might be good, except when # of items are large.

Use price $ instead of purchased items #?
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Practical Issues in Clustering

Small Decisions with Big Consequences

Feature scaling matters

Which linkage should we use?

Which dissimilarity measure should we use?

Where to cut the tree(dendrogram)?

In K -means, how many clusters should we look for?

There is no single right answer for all cases.
In practice we can always try several different choices and try to search for
the one that’s most useful and interpretable.
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Clustering using a mixture model
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Clustering using a mixture model

Real interview question from an IT company: I accidentally pooled
observations from two different normal distributions together, how do I
split them?
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Clustering using a mixture model

For the mixture model approach, we need to have:

a family of distributions (with parameters θ) for the clusters.

a number K, the number of underlying components.
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Clustering using a mixture model

In a mixture model, we assume the data are from a mixture of K
distributions with unknown parameters θk and unknown mixture
probabilities πk:

h(y|φ) =
K∑
k=1

πkf(y|θk)

subject to πk ≥ 0,
∑K

k=1 πk = 1
Here, φ = (π1, π2, ..., πK , θ1, θ2, ..., θK)T
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Clustering using a mixture model

Suppose we can estimate all the parameters (details later), we can
calculate the posterior probability for each observation to belong to a class
k as:

p̂k = P (k|y, φ̂) = π̂kf(y|θ̂k)∑
k π̂kf(y|θ̂k)

and assign the observation to the underlying class(membership) with the
largest posterior probability.
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Parameter estimation in mixture model

For parameter estimations in the problem above, an
expectation-maximization (EM) algorithm can be used.

EM algorithm is an iterative algorithm, looping through an E-step and an
M-step to update parameter estimates until convergence.
Specifically, after initializing the parameters φ, we iterate between the
following two steps:

E-step: Given current φ̂, calculate p̂ik = P (k|yi, φ̂) for k = 1, 2, ...,K
and each observation yi. Then, update πk = 1

n

∑n
i=1 p̂ik

M-step: Maximize likelihoood lk(θk) =
∑

i p̂iklogf(yi|θk) to obtain

new θ̂k
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Parameter estimation in mixture model

More math details:
Consider the full data {(yi, gi)}, where gi is the unobserved
class/membership for observation i. The log-likelihood for the full data is
l =

∑
i logf(yi|θgi).

The E-step is to calculate the expectation
lE =

∑
i

∑
k p̂iklogf(yi|θk) =

∑
k lk(θk).

The M-step is to maximize lE =
∑

k lk(θk) with respect to all the
parameters, which is equivalent to maximizing lk(θk) for all k.
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A Gentle Introduction to Expectation Maximization Photo by valcker , some
rights reserved.
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EM algorithm example

Gawad et al. Dissecting the clonal origins of childhood acute lymphoblastic
leukemia by single-cell genomics. PNAS. 2014 111:17947–17952.
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EM algorithm example

EM algorithm on the multivariate Bernoulli distribution for genome
mutation data.
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Textbook chapters

K-means, Hierarchical clustering:

ISLR chapter 12: 12.4

EM algorithm:

Original publication: Dempster, A.P.; Laird, N.M.; Rubin, D.B.
(1977). ”Maximum Likelihood from Incomplete Data via the EM
Algorithm”. Journal of the Royal Statistical Society, Series B. 39 (1):
1–38. JSTOR 2984875. MR 0501537.
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