PQHS 471

Lecture 5:
Fundamentals in Supervised Learning
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The

supervised learning problem:

Outcome measurement Y (also called dependent variable, response,
target).

Vector of p predictor measurement X (also called inputs, regressors,
covariates, features, independent variables).

In the regression problem, Y is quantitative (e.g price, blood
pressure).

In the classification problem, Y takes values in a finite, unordered set
(survived/died, digit 0-9, cancer type/class of tissue sample).

We have training data (z1,y1),....(xn,yn). These are observations
(examples, instances) of these measurements.
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On the basis of the training data we would like to:
@ Accurately predict unseen test cases.
@ Understand which inputs affect the outcome, and how.

@ Assess the quality of our predictions and inferences.
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Philosophy

@ It is important to understand the ideas behind the various techniques,
in order to know how and when to use them.

@ One has to understand the simpler methods first, in order to grasp
the more sophisticated ones.

@ It is important to accurately assess the performance of a method, to
know how well or how badly it is working [simpler methods often
perform as well as fancier ones!]

@ This is an exciting research area, having important applications in
biomedical, banking, IT and finance.

@ Supervised learning is a fundamental ingredient in the training of a
modern data scientist.



Statistical Learning versus Machine Learning

@ Machine learning arose as a subfield of Artificial Intelligence.

@ Statistical learning arose as a subfield of Statistics.
@ There is much overlap — both fields focus on supervised and
unsupervised problems:
e Machine learning has a greater emphasis on large scale large scale
applications and prediction accuracy.
e Statistical learning emphasizes models and their interpretability,
precision and uncertainty.
@ But the distinction has become more and more blurred, and there is a
great deal of “cross-fertilization” .



Supervised learning example
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Shown are Sales vs advertising on TV, Radio and Newspaper, with a blue
linear-regression line fit separately to each.

Can we predict Sales using these three?

Perhaps we can do better using a model

Sales ~ f(TV, Radio, Newspaper)

6 /45



Example notation

Here, Sales is a response or target that we wish to predict. We generically
refer to the response as Y.

TV is a feature, or input, or predictor; we name it Xj.

Likewise name Radio as X5, and so on.

We can refer to the input vector collectively as

X1
X=X,
X3
Now we write our model as
Y = f(X) +¢

where € captures measurement errors and other discrepancies.
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Why estimate f 7

o Prediction

o Inference



f: The estimated f that we want to use.
Once we have an f, we can make predictions of Y at new points X,y

A A~

Y = f(Xnew)

Here, ¥ represents the resulting prediction of Y.
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f: The estimated f that we want to use.
Once we have an f, we can make predictions of Y at new points X,y

A A~

Y = f(Xnew)

Here, ¥ represents the resulting prediction of Y.
In prediction, f can be treated as a black box: As long as the prediction is
accurate, the exact form of f is not the the focus in prediction problems.
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Accuracy in Prediction

The accuracy of Y as a prediction for Y depends on two quantities:
@ Reducible Error
@ lrreducible Error
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Accuracy in Prediction

The accuracy of Y as a prediction for Y depends on two quantities:

@ Reducible Error

@ lrreducible Error
Reducible: we can potentially improve the accuracy of f by using a more
proper statistical model/technique.

Irreducible: e =Y — f(X). The variability associated with €, cannot be
predicted by X, no matter how well we estimate f.
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Reducible vs. Irreducible

Suppgse we have a estimate f and a set of predictors X, so we have
Y = f(X). Assume both f and X are fixed.
It is easy to show that at X = x:

E(Y —Y)* = E[f(2) + € - f(2)]* = [f(x) = f(2)]* + Var(e)
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Reducible vs. Irreducible

Suppgse we have a estimate f and a set of predictors X, so we have
Y = f(X). Assume both f and X are fixed.
It is easy to show that at X = x:

E(Y —Y)* = E[f(2) + € - f(2)]* = [f(x) = f(2)]* + Var(e)

Now we can see better why the accuracy of Y as a prediction for Y
depends on two quantities:

-

[f(z) — f(2)]* + Var(e)
~ v ——
Reducible Irreducible
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Inference

Beside prediction accuracy, we are often interested in understanding the
way that Y is affected as X1, X», ..., X, change.

@ We wish to estimate f, but our goal is not always to predict Y
@ Understand the relationship between X and Y
@ Understand how Y changes as a function of X1, Xo,..., X,

° fcarl not be regarded as a black box.
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Common inference question #1

Which predictors are associated with the response?

o Often, only a small fraction of the variables are substantially
associated with Y.

o ldentifying the few important predictors can be extermely useful,
depending on the application.
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Common inference question #2

What is the relationship between the response and each predictor?
o Positive relationship? Negative relationship?

@ Association depending on other covariates?
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Common inference question #3

For Y ~ X: linear equation? More complicated?
@ Historically, most methods for estimating f have taken a linear form.
@ In some situations, such assumptions are reasonable or even desirable.

@ The true relationship can be more complicated.
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Common inference question #3

For Y ~ X: linear equation? More complicated?
@ Historically, most methods for estimating f have taken a linear form.
@ In some situations, such assumptions are reasonable or even desirable.
@ The true relationship can be more complicated.

Prediction and inference are not mutually exclusive: we will see
examples that fall into the prediction setting, the inference setting, or a
combination of the two.
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Advertising data example questions

One may be interested in answering inference questions such as:
@ Which media contribute to sales?
@ Which media generate the biggest boost in sales?

@ How much increase in sales is associated with a given increase in TV
advertising?
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How to estimate f

@ Parametric methods

@ Non-parametric methods
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Parametric methods

The linear model is an important example of a parametric model:

fL(X) = Bo+ b1 X1+ BoXo + ... + Bp X,

o First, a linear model is specified in terms of p + 1 parameters
BO? /81) /825 (XY} Bp

@ Second, we estimate the parameters by fitting the model to training
data.



Parametric methods examples

A linear model fL(X) = 30 + 31X gives a reasonable fit here

o
oo
o~ 4
°
® o0
- o o
o %
> ooodpq)%o
o ) 00 o
o o S ool © o
° o 00° 80000
T @ o0 © %o
o
¥
T T T T T
1 2 3 4 5 6

o
oo
o« °
°
o® 5
i °
- Q
l° 0
> o 0o° o
o o 00 0 %0 °
- o s} olo @
[ og oo © %o
o
|
T T T T T
1 2 3 4 5 6

19/45



Non-parametric methods

DO NOT make explicit assumptions about the functional form of f.

Instead, seek an f that gets as close to the data points as possible without
being too rough or wiggly.
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Non-parametric methods

DO NOT make explicit assumptions about the functional form of f.
Instead, seek an f that gets as close to the data points as possible without
being too rough or wiggly.

@ Advantage: Avoiding the assumption of a particular functional form

of f, have the potential to accurately fit a wider range of possible
shapes for f.

@ Parametric methods always bring the possibility that adopted f is
very different from the true f.

o Disadvantage: use large nubmer of parameters, need large number of
observations [expensive].
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Example: finding a good f
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Example: finding a good f
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Example: finding a good f
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A smooth thin-plate spline fit. Reasonable level of smoothness.



Example: finding a good f
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A smooth thin-plate spline fit. Low level of smoothness. Overfitting here!



Some trade-offs in modeling

@ Prediction accuracy versus interpretability.
— Linear models are easy to interpret; thin-plate splines are not.

@ Good fit versus over-fit or under-fit.
— How do we know when the fit is just right?

@ Parsimony versus black-box.
— We often prefer a simpler model involving fewer variables over a

black-box predictor involving them all.
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Flexibility vs. Interpretability
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The curse of dimensionality

Richard Bellman, 1961

Uit Cubs

Neighborhood

It is a luxury to have neighbors in higher dimensions!

In p-dimensions, to get a hypercube with volume r, the edge length
needed is /7.

In 10 dimensions, to capture 1% of the data to get a local average, we
need 63% of the range of each input variable.
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The curse of dimensionality

10% Neighborhood
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It is a luxury to have neighbors in higher dimensions!
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The curse of dimensionality

In other words,
To get a "dense” sample, if we need N = 100 samples in 1 dimension,
then we need N = 100'" samples in 10 dimensions.

In high-dimension, the data is always sparse and do not support density
estimation.

More data points are closer to the boundary, rather than to any other data
point — prediction is much harder near the edge of the training sample.
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The curse of dimensionality

Estimating a 1D density with 40 data points.
Standard Normal distribution.
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The curse of dimensionality

Estimating a 2D density with 40 data points.
2D normal distribution; zero mean; variance matrix is identity matrix.
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The curse of dimensionality

We have talked about the curse of dimensionality in the sense of density
estimation.
In a classification problem, we do not necessarily need density estimation.
@ Generative model — care about the mechanism: class density
function.
— Learns p(X,y), and predict using p(y|X)
— In high dimensions, this is difficult.

@ Discriminative model — care about boundary.
— Learns p(y|X) directly, potentially with a subset of X
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The curse of dimensionality

X Generative model
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Example: Classifying sea bass and salmon. Looking at the length/width
ratio is enough. Why should we care how many teeth each kind of fish
have, or what shape fins they have?
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Assessing Model Accurary

No one method dominates all others over all possible dataset [No free

lunch in statistics].
Selecting the best approach can be one of the most challenging parts of

performing statistical learning in practice.
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Measuring the quality of fit

To evaluate how well our predictions actually match the observed data.
Mean Squared Error (MSE)

MSE = 3 (i~ ()’
=1
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Training vs. Testing

We need to use some data to “train” our prediction model.

Training: Estimating the parameters in the model.

In general, we DO NOT care how well the method works in the
training dataset.

@ The accurary is more interesting when applying our model on
previously unseen dataset.

We need both training dataset and testing dataset.

36 /45



Training vs. Testing examples

@ Stock price: An algorithm to predict a stock’s price based on previous
(6 month) stock returns.
— How well it predict last week's return x
— How well it predict tomorrow's return v*

@ Diabetes risk: An algorithm to predict whether a person’s risk of
having diabetes, using clinical measurements (e.g. weight, bp, age,
family history, etc.).

— How well it predict patients used to train this algorithm x
— How well it predict a new person’s risk v/
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Method selection: minimize the testing MSE

Identify the method that minimize the test MSE.
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Black curve: truth. RHS: Red — Testing MSE. Grey — Training MSE.
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Low training MSE does not guarantee low testing MSE
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Training MSE keep decreasing while testing MSE ramps up.
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Here the truth is wiggly and the noise is low, so the flexible fits do the best.
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Bias-Variance Trade-off

The test MSE is the result of two competing properties in statistics: Bias
and Variance.

Suppose we have a estimate f(z) for f(z).

A new data point xg comes in.

The expected test MSE is then (show this!):

E(yo — f(20))? = Var(f (xo)] + [Bias(f(x0))]> + Var(e)

The 3 sources of test MSE: (1) sampling variation (variance) (2) choice
during modeling (bias) and (3) irreducible error.

Given a fixed dataset, a more complex/flexible model tends to reduce bias
but increase variation.
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Bias-Variance Trade-off examples
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Reminder of the ROC curve

:
cut-off

True negative; TN
(specificity’

False negative (FN) > False positive (FP)

Healthy ) Sick

Moving cut-off to left
reduces false negatives
(higher specificity)
at cost of
reduced sensitivity

Moving cut-off to right
reduces false positives
(higher sensitivity)
at cost of
reduced specificity

Healthy Sick




Reminder of the ROC curve

Receiver Operating Characteristic (ROC) curve
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Textbook chapters

@ ISLR: chapter 2: 2.1 - 2.2
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