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Starting point

The supervised learning problem:

Outcome measurement Y (also called dependent variable, response,
target).

Vector of p predictor measurement X (also called inputs, regressors,
covariates, features, independent variables).

In the regression problem, Y is quantitative (e.g price, blood
pressure).

In the classification problem, Y takes values in a finite, unordered set
(survived/died, digit 0-9, cancer type/class of tissue sample).

We have training data (x1, y1),...,(xN , yN ). These are observations
(examples, instances) of these measurements.
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Objectives

On the basis of the training data we would like to:

Accurately predict unseen test cases.

Understand which inputs affect the outcome, and how.

Assess the quality of our predictions and inferences.
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Philosophy

It is important to understand the ideas behind the various techniques,
in order to know how and when to use them.

One has to understand the simpler methods first, in order to grasp
the more sophisticated ones.

It is important to accurately assess the performance of a method, to
know how well or how badly it is working [simpler methods often
perform as well as fancier ones!]

This is an exciting research area, having important applications in
biomedical, banking, IT and finance.

Supervised learning is a fundamental ingredient in the training of a
modern data scientist.
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Statistical Learning versus Machine Learning

Machine learning arose as a subfield of Artificial Intelligence.

Statistical learning arose as a subfield of Statistics.

There is much overlap — both fields focus on supervised and
unsupervised problems:

Machine learning has a greater emphasis on large scale large scale
applications and prediction accuracy.
Statistical learning emphasizes models and their interpretability,
precision and uncertainty.

But the distinction has become more and more blurred, and there is a
great deal of “cross-fertilization”.
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Supervised learning example

Shown are Sales vs advertising on TV, Radio and Newspaper, with a blue
linear-regression line fit separately to each.
Can we predict Sales using these three?
Perhaps we can do better using a model

Sales ≈ f(TV,Radio,Newspaper)
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Example notation

Here, Sales is a response or target that we wish to predict. We generically
refer to the response as Y.
TV is a feature, or input, or predictor; we name it X1.
Likewise name Radio as X2, and so on.
We can refer to the input vector collectively as

X =

X1

X2

X3


Now we write our model as

Y = f(X) + ε

where ε captures measurement errors and other discrepancies.
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Why estimate f ?

Prediction

Inference
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Prediction

f̂ : The estimated f that we want to use.
Once we have an f̂ , we can make predictions of Y at new points Xnew

Ŷ = f̂(Xnew)

Here, Ŷ represents the resulting prediction of Y .

In prediction, f̂ can be treated as a black box : As long as the prediction is
accurate, the exact form of f̂ is not the the focus in prediction problems.
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Accuracy in Prediction

The accuracy of Ŷ as a prediction for Y depends on two quantities:

Reducible Error

Irreducible Error

Reducible: we can potentially improve the accuracy of f̂ by using a more
proper statistical model/technique.
Irreducible: ε = Y − f(X). The variability associated with ε, cannot be
predicted by X, no matter how well we estimate f .
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Reducible vs. Irreducible

Suppose we have a estimate f̂ and a set of predictors X, so we have
Ŷ = f̂(X). Assume both f̂ and X are fixed.
It is easy to show that at X = x:

E(Y − Ŷ )2 = E[f(x) + ε− f̂(x)]2 = [f(x)− f̂(x)]2 + V ar(ε)

Now we can see better why the accuracy of Ŷ as a prediction for Y
depends on two quantities:
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Inference

Beside prediction accuracy, we are often interested in understanding the
way that Y is affected as X1, X2, ..., Xp change.

We wish to estimate f , but our goal is not always to predict Y

Understand the relationship between X and Y

Understand how Y changes as a function of X1, X2, ..., Xp

f̂ can not be regarded as a black box.
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Common inference question #1

Which predictors are associated with the response?

Often, only a small fraction of the variables are substantially
associated with Y .

Identifying the few important predictors can be extermely useful,
depending on the application.
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Common inference question #2

What is the relationship between the response and each predictor?

Positive relationship? Negative relationship?

Association depending on other covariates?
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Common inference question #3

For Y ∼ X: linear equation? More complicated?

Historically, most methods for estimating f have taken a linear form.

In some situations, such assumptions are reasonable or even desirable.

The true relationship can be more complicated.

Prediction and inference are not mutually exclusive: we will see
examples that fall into the prediction setting, the inference setting, or a
combination of the two.
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Advertising data example questions

One may be interested in answering inference questions such as:

Which media contribute to sales?

Which media generate the biggest boost in sales?

How much increase in sales is associated with a given increase in TV
advertising?
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How to estimate f

Parametric methods

Non-parametric methods
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Parametric methods

The linear model is an important example of a parametric model:

fL(X) = β0 + β1X1 + β2X2 + ...+ βpXp

First, a linear model is specified in terms of p+ 1 parameters
β0, β1, β2, ..., βp

Second, we estimate the parameters by fitting the model to training
data.
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Parametric methods examples

A linear model f̂L(X) = β̂0 + β̂1X gives a reasonable fit here

A quadratic model f̂Q(X) = β̂0 + β̂1X + β̂2X
2 fits slightly better
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Non-parametric methods

DO NOT make explicit assumptions about the functional form of f .
Instead, seek an f that gets as close to the data points as possible without
being too rough or wiggly.

Advantage: Avoiding the assumption of a particular functional form
of f , have the potential to accurately fit a wider range of possible
shapes for f .

Parametric methods always bring the possibility that adopted f is
very different from the true f .

Disadvantage: use large nubmer of parameters, need large number of
observations [expensive].
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Example: finding a good f

Income, years of education, and seniority
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Example: finding a good f

Linear fit
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Example: finding a good f

A smooth thin-plate spline fit. Reasonable level of smoothness.
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Example: finding a good f

A smooth thin-plate spline fit. Low level of smoothness. Overfitting here!
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Some trade-offs in modeling

Prediction accuracy versus interpretability.
— Linear models are easy to interpret; thin-plate splines are not.

Good fit versus over-fit or under-fit.
— How do we know when the fit is just right?

Parsimony versus black-box.
— We often prefer a simpler model involving fewer variables over a
black-box predictor involving them all.
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Flexibility vs. Interpretability
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The curse of dimensionality

Richard Bellman, 1961

It is a luxury to have neighbors in higher dimensions!
In p-dimensions, to get a hypercube with volume r, the edge length
needed is r1/p.
In 10 dimensions, to capture 1% of the data to get a local average, we
need 63% of the range of each input variable.
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The curse of dimensionality

In other words,
To get a “dense” sample, if we need N = 100 samples in 1 dimension,
then we need N = 10010 samples in 10 dimensions.
In high-dimension, the data is always sparse and do not support density
estimation.
More data points are closer to the boundary, rather than to any other data
point → prediction is much harder near the edge of the training sample.
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The curse of dimensionality

Estimating a 1D density with 40 data points.
Standard Normal distribution.
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The curse of dimensionality

Estimating a 2D density with 40 data points.
2D normal distribution; zero mean; variance matrix is identity matrix.
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The curse of dimensionality

We have talked about the curse of dimensionality in the sense of density
estimation.
In a classification problem, we do not necessarily need density estimation.

Generative model — care about the mechanism: class density
function.
— Learns p(X, y), and predict using p(y|X)
— In high dimensions, this is difficult.

Discriminative model — care about boundary.
— Learns p(y|X) directly, potentially with a subset of X
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The curse of dimensionality

Example: Classifying sea bass and salmon. Looking at the length/width
ratio is enough. Why should we care how many teeth each kind of fish
have, or what shape fins they have?
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Assessing Model Accurary

No one method dominates all others over all possible dataset [No free
lunch in statistics].
Selecting the best approach can be one of the most challenging parts of
performing statistical learning in practice.
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Measuring the quality of fit

To evaluate how well our predictions actually match the observed data.
Mean Squared Error (MSE)

MSE =
1

n

n∑
i=1

(yi − f̂(xi))2
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Training vs. Testing

We need to use some data to “train” our prediction model.

Training: Estimating the parameters in the model.

In general, we DO NOT care how well the method works in the
training dataset.

The accurary is more interesting when applying our model on
previously unseen dataset.

We need both training dataset and testing dataset.
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Training vs. Testing examples

Stock price: An algorithm to predict a stock’s price based on previous
(6 month) stock returns.
— How well it predict last week’s return ×
— How well it predict tomorrow’s return X

Diabetes risk: An algorithm to predict whether a person’s risk of
having diabetes, using clinical measurements (e.g. weight, bp, age,
family history, etc.).
— How well it predict patients used to train this algorithm ×
— How well it predict a new person’s risk X
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Method selection: minimize the testing MSE

Identify the method that minimize the test MSE.

Black curve: truth. RHS: Red — Testing MSE. Grey — Training MSE.
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Low training MSE does not guarantee low testing MSE

Training MSE keep decreasing while testing MSE ramps up.
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Here the truth is wiggly and the noise is low, so the flexible fits do the best.
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Bias-Variance Trade-off

The test MSE is the result of two competing properties in statistics: Bias
and Variance.
Suppose we have a estimate f̂(x) for f(x).
A new data point x0 comes in.
The expected test MSE is then (show this!):

E(y0 − f̂(x0))2 = V ar[f̂(x0)] + [Bias(f̂(x0))]
2 + V ar(ε)

The 3 sources of test MSE: (1) sampling variation (variance) (2) choice
during modeling (bias) and (3) irreducible error.
Given a fixed dataset, a more complex/flexible model tends to reduce bias
but increase variation.
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Bias-Variance Trade-off examples
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Reminder of the ROC curve
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Reminder of the ROC curve

Receiver Operating Characteristic (ROC) curve

Introduction 44 / 45



Textbook chapters

ISLR: chapter 2: 2.1 - 2.2
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