
PQHS 471
Lecture 6:

Decision Tree, Bayes Classifier, KNN
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Classification problems
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Motivating example

Fruit Identification.

“At the edge of the world, statistical journey begins.”
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Decision Tree

A flowchart tree-like structure that is made from training set.
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Decision Tree Induction (DTI)

The method of learning the decision trees from the training set.

Need to have a training dataset with observations and class labels.

The tree structure has a root node, internal nodes or decision nodes,
leaf node, and branches.

The root node is the topmost node. It represents the best attribute
selected for classification.

Internal nodes of the decision nodes represent a test of an attribute of
the dataset

Leaf node or terminal node represents the classification or decision
label.

Some decision trees only have binary nodes (have exactly two
branches of a node), while some are non-binary.
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Decision Tree Induction: An example
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Algorithm for DTI

ID3 (Iterative Dichotomiser), C4.5,by Quinlan.

CART (Classification and Regression Trees)

Basic algorithm (a greedy algorithm)

Tree is constructed in a top-down recursive divide-and-conquer manner
At start, all the training examples are at the root
Attributes(predictors) are categorical (if continuous-valued, they are
discretized in advance)
Examples are partitioned recursively based on selected attributes
Test attributes are selected on the basis of a heuristic or statistical
measure (e.g., information gain)
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Algorithm for DTI

Conditions for stopping partitioning

All samples for a given node belong to the same class

There are no remaining attributes for further partitioning – majority
voting is employed for classifying the leaf

There are no samples left
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Attribute(predictors) selection measures

Idea: select attribute that partition samples into homogeneous
groups

Measures:

Information gain (ID3)
Gain ratio (C4.5)
Gini index (CART)
Variance reduction for continuous target variable (CART)
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Brief Review of Entropy

Entropy (Information Theory)
A measure of uncertainty associated with a random variable
Calculation: For discrete random variable Y taking m distinct values
y1, y2, ..., ym

H(Y ) = −
m∑
i=1

pilog(pi)

where pi = P (Y = yi)

Interpretation:
Higher entropy → higher uncertainty
Lower entropy → lower uncertainty

Conditional Entropy: H(Y |X) =
∑

x p(x)H(Y |X = x)
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Attribute selection measure:
Information Gain (ID3/C4.5)

Idea: select the attribute with the highest information gain

Let pi be the probability that an arbitrary tuple (observation + label)
in D belongs to class Ci, estimated by |Ci,D|/|D|
Expected information (entropy) needed to classify a tuple in D:

Info(D) = −
m∑
i=1

pilog(pi)

Information needed (after using A to split D into v partitions) to
classify D:

InfoA(D) =

v∑
j=1

|Dj |
|D|
× Info(Dj)

Information gained by branching on attribute A:

Gain(A) = Info(D)− InfoA(D)
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Attribute selection: Information Gain

Class P: buys computer = ”yes”

Class N: buys computer = ”no”

Info(D) = I(9, 5) = − 9

14
log(

9

14
)− 5

14
log(

5

14
) = 0.940
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Attribute selection: Information Gain

Infoage(D) =
5

14
I(2, 3) +

4

14
I(4, 0) +

5

14
I(3, 2) = 0.694

Here, we have 5
14I(2, 3) because the “age≤30” group has 5 out of 14

samples, with 2 yes and 3 no.
Hence:

Gain(age) = Info(D)− Infoage(D) = 0.246
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Attribute selection: Information Gain

Similarly:
Gain(age) = 0.246

Gain(income) = 0.029

Gain(student) = 0.151

Gain(creditrating) = 0.048

Use “age” as the first(root) node for Decision Tree
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Computing information gain for
continuous valued attributes

Let attribute A be a continuous-valued attribute

Must determine the best split point for A

Sort the value A in increasing order
Typically, the midpoint between each pair of adjacent values is
considered as a possible split point
?(ai + ai+1)/2 is the midpoint between the values of ai and ai+1

The point with the minimum expected information requirement for A
is selected as the split-point for A

Split: D1 is the set of tuples in D satisfying A ≤ split-point, and D2
is the set of tuples in D satisfying A > split-point
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Gain Ratio for attribute selection (C4.5)
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Gini Index (CART, IBM IntelligentMiner)

If a dataset D contains examples from n classes, gini index, gini(D)
is defined as:

gini(D) = 1−
n∑

j=1

p2j

where pj is the relative frequency of class j in D

If a dataset D split on A into two subsets D1 and D2, the gini index
gini(D) is defined as:

giniA(D) =
|D1|
|D|

gini(D1) +
|D2|
|D|

gini(D2)

Reduction in Impurity:

∆gini(A) = gini(D)− giniA(D)

The attribute provides the largest reduction in impurity (or smallest
ginisplit(D)) is chosen to split the node
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Computation of Gini Index
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Comparing Attribute Selection Measures

These three measures, in general, return good results but

Information Gain:
biased towards multivalued attributes

Gain Ratio:
tends to prefer unbalanced splits in which one partition is much
smaller than the others

Gini Index:
(1) biased to multivalued attributes
(2) tends to favor tests that result in equal-sized partitions and purity
in both partitions
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Overfitting in DTI

Overfitting: An induced tree may overfit the training data

Too many branches, some may reflect anomalies and noises

Poor accuracy for unseen sample

Underfitting: when model is too simple, both training and test errors are
large

Introduction 20 / 39



Would you survive the Titanic?

Build a predictive model: “what sorts of people were more likely to
survive?” Kaggle Titanic ML Competition
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https://www.kaggle.com/c/titanic


Bayes Classification Methods
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Bayesian Classification: Why?

The most fundamental statistical classifier.

Performs probabilistic prediction, i.e., predicts class membership
probabilities.

Foundation: Bayes’ Theorem

The best classifier as it minimizes the expected classification error
rate.

Often used as a reference in simulation study.

Bayes classifier is often unknown in practice.
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Bayes’ Theorem: Basics

Total Probability Theorem

P (B) =
∑M

i=1 P (B|Ai)P (Ai)

Bayes’ Theorem

P (A|B) = P (B|A)P (A)
P (B)

P (A|B) and P (B|A) are conditional probabilities.

P (A) and P (B) are marginal probabilities.
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Posterior probability

Posterior ∝ Likelihood × Prior

p(θ|x) =
p(x|θ)p(θ)
p(x)

p(θ|x) ∝ p(x|θ)p(θ)

p(θ) is the prior
p(x|θ) is the likelihood
p(θ|x) is the posterior
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Bayes’ theorem: cookie example

P (A|B) =
P (B|A)P (A)

P (B)

Red jar: 10 chocolate + 30 plain
Yellow jar: 20 chocolate + 20 plain
Pick a jar, and then pick a cookie
If it’s a plain cookie, what’s the probability the cookie was picked out of
red jar?
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Classification using posterior

Let D be a training set of tuples and their associated class labels, and
each tuple is represented by an n−D attribute vector
X = (x1, x2, ..., xn)

Suppose there are m classes C1, C2, ..., Cm.

Classification is to find the i s.t.

argmaxiP (Ci|X)

By Bayes’ theorem:

P (Ci|X) =
P (X|Ci)P (Ci)

P (X)

Since P (X) is constant for all classes:

P (Ci|X) ∝ P (X|Ci)P (Ci)
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(Näıve) Bayes Classifier

A simplified assumption: attributes are conditionally independent:

P (X|Ci) =

n∏
k=1

P (xk|Ci)
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(Näıve) Bayes Classifier: Example
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(Näıve) Bayes Classifier: Example
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Avoiding the Zero-Probability Problem

Näıve Bayes Classifier requires each conditional probability to be
non-zero. Otherwise, the predicted prob. will be 0:

P (X|Ci) =

n∏
k=1

P (xk|Ci)

E.g. A dataset with 1,000 tuples, income = low (n = 0), income =
medium (n = 990), income = low (n = 10).

Use Laplacian correction
Adding 1 to each case
Prob(income=low) = 1/1003
Prob(income=medium) = 991/1003
Prob(income=high) = 11/1003

The “corrected” prob. estimates are close to their “uncorrected”
counterparts.
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(Näıve) Bayes Classifier: comments

Advantages:

Easy to implement

Good results obtained in most of the cases

Disadvantages:

Assumption: class conditional independence, therefore loss of
accuracy

Practically, dependencies exist among variables
E.g., hospitals: patients: Profile: age, family history, etc.
Symptoms: fever, cough etc.,

Dependencies among these cannot be modeled by Näıve Bayes
Classifier

How to deal with these dependencies? Bayesian Belief Networks
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(Näıve) Bayes Classifier: practice

Predict whether this person will play golf or not for the following tuple:
(Outlook = Sunny, Temp = Cool, Humidity = High, Windy = True)
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k-nearest neighbors (KNN)
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k-nearest neighbors (KNN)

KNN is a local non-parametric classification method.
k is a hyperparameter.
KNN example with k = 3.
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k-nearest neighbors (KNN)

Given a positive integer k and a test observation x0

First, identifies the k points in the training data that are closest to
x0, represented by N0.

Then, estimates the conditional probability for class j as the fraction
of points in N0 whose response values equal j.

Pr(Y = j|X = x0) =
1

K

∑
i∈N0

I(yi = j)

Assign x0 to the class with the largest probability.
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k-nearest neighbors (KNN)
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k-nearest neighbors (KNN)
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k-nearest neighbors (KNN)
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