PQHS 471

Lecture 6:
Decision Tree, Bayes Classifier, KNN
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Classification problems

Here the response variable Y is qualitative — e.g. email is one
of C = (spam, ham) (ham=good email), digit class is one of
C ={0,1,...,9}. Our goals are to:

e Build a classifier C(X) that assigns a class label from C to
a future unlabeled observation X.

e Assess the uncertainty in each classification

e Understand the roles of the different predictors among
X = (X1:X27' "aXP)'
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Motivating example

Fruit ldentification.

Skin Color Size Flesh Conclusion
Hairy Brown Large Hard safe
Hairy Green Large Hard Safe
Smooth Red Large Soft Dangerous
Hairy Green Large Soft Safe
Smooth Red Small Hard Dangerous

“At the edge of the world, statistical journey begins.”



Decision Tree

@ A flowchart tree-like structure that is made from training set.

Predictors Target
Decision Tree

Outlook Temp  Humidity Windy Play Golf

Rainy Hat Hioh Faie No

Rainy Hat Hign True e

Overoast Hot High Faice Yec =
Sunny LEE] High Falce Yoo o Oune Rainy
Sunny Cool Normal Falce Yoo

Sunny Cool Normal True No

Overoset Caol | Wormal True Yoo # Yes

Ralny LEE] High Falce No

Ralny Cool Normal Faice Yoo A

Sunny wia | wormat Fae vor { FALSE J [ TRUE } High Nornul]
Rainy wia | wormal True vee

overvact Wi | Hion True Voo [ [ [ I
Overoast Hot Normal Faice Yoo Yes No No Yes
Bunny LEC] High True No
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Decision Tree Induction (DTI)

@ The method of learning the decision trees from the training set.
@ Need to have a training dataset with observations and class labels.

@ The tree structure has a root node, internal nodes or decision nodes,
leaf node, and branches.

@ The root node is the topmost node. It represents the best attribute
selected for classification.

@ Internal nodes of the decision nodes represent a test of an attribute of
the dataset

@ Leaf node or terminal node represents the classification or decision
label.

@ Some decision trees only have binary nodes (have exactly two
branches of a node), while some are non-binary.



Decision Tree Induction: An example

Q Training data set: Buys_computer
Q Resulting tree:

|
* - credit rating?

no yes excellent fair

/ /
- i no
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Algorithm for DTI

o ID3 (lterative Dichotomiser), C4.5,by Quinlan.
o CART (Classification and Regression Trees)
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Algorithm for DTI

o ID3 (lterative Dichotomiser), C4.5,by Quinlan.

e CART (Classification and Regression Trees)
@ Basic algorithm (a greedy algorithm)
o Tree is constructed in a top-down recursive divide-and-conquer manner
o At start, all the training examples are at the root
o Attributes(predictors) are categorical (if continuous-valued, they are
discretized in advance)
o Examples are partitioned recursively based on selected attributes
o Test attributes are selected on the basis of a heuristic or statistical
measure (e.g., information gain)



Algorithm for DTI

Conditions for stopping partitioning
@ All samples for a given node belong to the same class

@ There are no remaining attributes for further partitioning — majority
voting is employed for classifying the leaf

@ There are no samples left



Attribute(predictors) selection measures

o ldea: select attribute that partition samples into homogeneous
groups
@ Measures:

o Information gain (ID3)
e Gain ratio (C4.5)

o Gini index (CART)

e Variance reduction for continuous target variable (CART)
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Brief Review of Entropy

e Entropy (Information Theory)

e A measure of uncertainty associated with a random variable
o Calculation: For discrete random variable Y taking m distinct values

Y1,Y2, -, Ym m
H(Y) == pilog(p:)
i=1

where p; = P(Y = y;)
@ Interpretation:

e Higher entropy — higher uncertainty
o Lower entropy — lower uncertainty

e Conditional Entropy: H(Y|X) =" p(z)H(Y|X = x)



Attribute selection measure:

Information Gain (ID3/C4.5)

o ldea: select the attribute with the highest information gain

@ Let p; be the probability that an arbitrary tuple (observation + label)
in D belongs to class C;, estimated by |C; p|/|D|

@ Expected information (entropy) needed to classify a tuple in D:

Info(D szlog (pi)

@ Information needed (after using A to split D into v partitions) to
classify D:

Infos(D Z||D]|’ x Info(Dj)

@ Information gained by branching on attribute A:
Gain(A) = Info(D) — Infoa(D)



Attribute selection: Information Gain

@ Class P: buys computer = "yes"
@ Class N: buys computer = "no"

9 9 5 5
Info(D) =1(9,5) = —ﬂlog(ﬂ) — ﬁlog(ﬂ) = 0.940

I(pi, ni)
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Attribute selection: Information Gain

I(pi, )

5 4 5
Infouge(D) = 771(2,3) + 711(4,0) + 171(3,2) = 0.604

Here, we have 2 1(2,3) because the “age<30" group has 5 out of 14
samples, with 2 yes and 3 no.
Hence:

Gain(age) = Info(D) — Infoage(D) = 0.246
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Attribute selection: Information Gain

Similarly:
Gain(age) = 0.246

Gain(income) = 0.029
Gain(student) = 0.151
Gain(creditrating) = 0.048

Use “age” as the first(root) node for Decision Tree
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Computing information gain for

continuous valued attributes

@ Let attribute A be a continuous-valued attribute
@ Must determine the best split point for A

e Sort the value A in increasing order

e Typically, the midpoint between each pair of adjacent values is
considered as a possible split point
*(a; + a;4+1)/2 is the midpoint between the values of a; and a;11

o The point with the minimum expected information requirement for A
is selected as the split-point for A

@ Split: D1 is the set of tuples in D satisfying A < split-point, and D2
is the set of tuples in D satisfying A > split-point
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Gain Ratio for attribute selection (C4.5)

= Information gain measure is biased towards attributes with a
large number of values

m CA4.5 (a successor of ID3) uses gain ratio to overcome the
problem (normalization to information gain)

. |D; | | D, |
SplitInfo (D)= — /_x1o .
plitInfo (D) ,Z::'lDl gz(lDl)

= GainRatio(A) = Gain(A)/Splitinfo(A)

Ex. 4 4y 6 6 4 4
SplitInfo;come(D) = % log2(ﬁ) - X ].Og2(ﬁ) TR logz(ﬁ) =1.557

= gain_ratio(income) = 0.029/1.557 = 0.019

= The attribute with the maximum gain ratio is selected as the
splitting attribute
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Gini Index (CART, IBM IntelligentMiner)

e If a dataset D contains examples from n classes, gini index, gini(D)
is defined as: .
gini(D) =1— Zp?
j=1

where p; is the relative frequency of class j in D

o If a dataset D split on A into two subsets Dy and D5, the gini index
gini(D) is defined as:

Do
ginia(D) = "D“gmz(D )+ HanZ(DQ)

@ Reduction in Impurity:
Agini(A) = gini(D) — ginia(D)

@ The attribute provides the largest reduction in impurity (or smallest
ginigpit (D)) is chosen to split the node
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Computation of Gini Index

= Ex. D has 9 tuples in buys_computer = ”2yes" agd 5in “no”
gini(D)=1- 2 (2 =0.459

= Suppose the attribute income partitions D into 10 in D;: {low,
medium} and 4 in DZ 8L omeetow,mediam (D):(ngini(Dl)"'(%iji(Dz)
10 7\* (3}, ¢ 20? [2\?
m(“(ﬁ) ‘(E”*ﬁ(“(ﬂ *(1))
= 0.443

= Giftipcome ¢ {high} (D)-

GiNigoy, highy 1S 0-458; GiNijedium highy iS 0-450. Thus, split on the
{low,medium} (and {high}) since it has the lowest Gini index



Comparing Attribute Selection Measures

These three measures, in general, return good results but

@ Information Gain:
biased towards multivalued attributes

o Gain Ratio:
tends to prefer unbalanced splits in which one partition is much
smaller than the others

@ Gini Index:
(1) biased to multivalued attributes
(2) tends to favor tests that result in equal-sized partitions and purity
in both partitions
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Overfitting in DTI

Overfitting: An induced tree may overfit the training data
@ Too many branches, some may reflect anomalies and noises
@ Poor accuracy for unseen sample

Underfitting: when model is too simple, both training and test errors are
large
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Would you survive the Titanic?

7‘”"-3" R T
’% S i g

Build a predictive model: “what sorts of people were more likely to
survive?"”
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https://www.kaggle.com/c/titanic

Bayes Classification Methods )

22/39



Bayesian Classification: Why?

@ The most fundamental statistical classifier.

@ Performs probabilistic prediction, i.e., predicts class membership
probabilities.

o Foundation: Bayes' Theorem

@ The best classifier as it minimizes the expected classification error
rate.

@ Often used as a reference in simulation study.

@ Bayes classifier is often unknown in practice.
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Bayes' Theorem: Basics

Total Probability Theorem

P(B) =Y, P(B|A:)P(A;)

Bayes' Theorem

P(A|B) = —P<BI\D?£1)’<A>

e P(A|B) and P(B|A) are conditional probabilities.
e P(A) and P(B) are marginal probabilities.
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Posterior probability

Posterior o< Likelihood x Prior )

L plop()

p(0lx) o< p(x|0)p(0)

p(0) is the prior
p(x]0) is the likelihood
p(0|x) is the posterior
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Bayes' theorem: cookie example

P(B|A)P(A)
P(A|IB) = ————~*
Red jar: 10 chocolate + 30 plain
Yellow jar: 20 chocolate + 20 plain
Pick a jar, and then pick a cookie

If it's a plain cookie, what's the probability the cookie was picked out of
red jar?
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Classification using posterior

@ Let D be a training set of tuples and their associated class labels, and
each tuple is represented by an n — D attribute vector
X = (21,22, ..., Tp)

@ Suppose there are m classes Cy, (s, ..., Cp,.

o Classification is to find the i s.t.
argmaz; P(C;|X)
o By Bayes' theorem:
P(X|C3)P(Cs)
P(Cy|X) = 22 i)
%) = S
@ Since P(X) is constant for all classes:

P(Ci|X) < P(X|C;)P(C;)

27 /39



(Naive) Bayes Classifier

A simplified assumption: attributes are conditionally independent:

n

P(X|C;) = [ PlaxlCi)
k=1



(Naive) Bayes Classifier: Example

income jstudentredit rating com

Class:
C1:buys_computer = ‘yes’
C2:buys_computer = ‘no’

Data to be classified:
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)



(Naive) Bayes Classifier: Example

= P(C): P(buys_computer = “yes”) =9/14=0.643
P(buys_computer = “no”) = 5/14=0.357
= Compute P(X|C;) for each class
P(age = “<=30" | buys_computer = “yes”) =2/9=0.222
P(age = “<=30" | buys_computer = “no”) =3/5=0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5= 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”)=1/5=0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) =2/5=0.4
= X=(age <=30, income = medium, student = yes, credit_rating = fair)
P(X|C) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
P(X|buys_computer = “no”) =0.6 x0.4x 0.2 x 0.4 =0.019
P(X|C)*P(C) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007
Therefore, X belongs to class (“buys_computer = yes”)
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Avoiding the Zero-Probability Problem

@ Naive Bayes Classifier requires each conditional probability to be
non-zero. Otherwise, the predicted prob. will be O:

n

P(X|Cy) H (21]Cy)

e E.g. A dataset with 1,000 tuples, income = low (n = 0), income =
medium (n = 990), income = low (n = 10).
@ Use Laplacian correction
e Adding 1 to each case
Prob(income=low) = 1/1003
Prob(income=medium) = 991/1003
Prob(income=high) = 11/1003
@ The “corrected” prob. estimates are close to their “uncorrected”
counterparts.
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(Naive) Bayes Classifier: comments

Advantages:
o Easy to implement
@ Good results obtained in most of the cases

Disadvantages:

@ Assumption: class conditional independence, therefore loss of
accuracy

o Practically, dependencies exist among variables
E.g., hospitals: patients: Profile: age, family history, etc.
Symptoms: fever, cough etc.,

@ Dependencies among these cannot be modeled by Naive Bayes
Classifier

How to deal with these dependencies? Bayesian Belief Networks
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(Naive) Bayes Classifier: practice

Outlook Temp Humidity  Windy Play Golf

Rainy Hot High False Ne
Rainy Hot High True No
Overcast Hot High False Yes
Sunny Mild High False Yes
Sunny Cool Normal False Yes
Sunny Cool Normal True No
Overcast Cool Normal True Yes
Rainy Mild High False Ne
Rainy Cool Normal False Yes
sunny Mild Normal False Yes
Rainy Mild Normal True Yes
overcast Mild High True Yos
Overcast Hot Normal False Yes
Sunny Mild High True No

Predict whether this person will play golf or not for the following tuple:
(Outlook = Sunny, Temp = Cool, Humidity = High, Windy = True)
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k-nearest neighbors (KNN) J
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k-nearest neighbors (KNN)

KNN is a local non-parametric classification method.
k is a hyperparameter.
KNN example with k& = 3.
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k-nearest neighbors (KNN)

Given a positive integer k and a test observation zq

First, identifies the k£ points in the training data that are closest to
xg, represented by Aj.

@ Then, estimates the conditional probability for class j as the fraction
of points in Ny whose response values equal j.

. 1 .
Pr(Y =j|X =) = 2= > 1(si =)
€Ny

@ Assign xg to the class with the largest probability.
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earest neighbors (KNN)

KNN: K=10
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k-nearest neighbors (KNN)

KNN: K=1 KNN: K=100




Error Rate
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