
PQHS 471
Lecture 7: Regression methods

GLM, LDA, QDA
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Motivating example

credit card default
Default dataset in R.

Introduction 2 / 38



Can we use linear regression?

Suppose for the Default classification task that we code

Can we simply perform a linear regression of Y on X and classify as Yes if
Ŷ > 0.5?

Since in the population E(Y |X = x) = Pr(Y = 1|X = x), we might
think that regression is perfect for this task.

Linear regression might produce probabilities < 0 or > 1. Logistic
regression is more appropriate.
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Linear vs. Logistic Regression

The orange marks indicate the response Y , either 0 or 1. Linear
regression does not estimate Pr(Y = 1|X) well. Logistic regression seems
well suited to the task.
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Linear Regression? No

Now suppose we have a response variable with three possible values. A
patient presents at the emergency room, and we must classify them
according to their symptoms.

This coding suggests an ordering, and in fact implies that the
difference between stroke and drug overdose is the same as between
drug overdose and epileptic seizure.

Linear regression is not appropriate here.

Multiclass Regression or Discriminant Analysis are more appropriate.
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Logistic Regression

Let’s write p(X) = Pr(Y = 1|X) for short and consider using balance to
predict default. Logistic regression uses the form

Rather than modeling this response Y directly, logistic regression
models the probability that Y belongs to a particular category.

Logistic model is better able to capture the range of probabilities than
is the linear regression.
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Maximum Likelihood

This likelihood gives the probability of the observed 0’s and 1’s in the
data.

We pick β0 and β1 to maximize the likelihood of the observed data.

Most statistical packages can fit linear logistic regression models by
maximum likelihood. In R we use the glm function.
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Making Predictions

What is our estimated probability of default for someone with a balance of
$1000?

With a balance of $2000?
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Making Predictions: student

Using student as the only predictor:
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Multiple Logistic Regression

Why is coefficient for student negative, while it was positive before?

Introduction 10 / 38



Multiple Logistic Regression

Why is coefficient for student negative, while it was positive before?
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Confounding

Students tend to have higher balances than non-students, so their
marginal default rate is higher than for non-students.

But for each level of balance, students default less than non-students.

Different interpretations for univariate- and multiple-Logistic
Regression.
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More than two classes

So far we have discussed logistic regression with two classes.
The idea can be generalized to more than two classes, for example:

A linear function for each class.

multinomial regression is an example.
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Categorical Data Analysis (CDA) book

Highly recommend.
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Linear Discriminant Analysis
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Discriminant Analysis

Here the approach is to model the distribution of X in each of the
classes separately, and then use Bayes Theorem to flip things around
and obtain Pr(Y |X).

When we use normal (Gaussian) distributions for each class, this leads
to linear/quadratic discriminant analysis.

However, this approach is quite general, and other distributions can
be used as well. We will focus on normal distributions.
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Bayes Theorem revisit

P (B) =

M∑
i=1

P (B|Ai)P (Ai)

P (A|B) =
P (B|A)P (A)

P (B)

p(θ|x) =
p(x|θ)p(θ)
p(x)

One writes this slightly differently for discriminant analysis:

Pr(Y = k|X = x) =
πkfk(x)∑k
l=1 πlfl(x)

Here, fk(x) = Pr(X = x|Y = k) is the density for X in class k. We
will use normal densities for these, separately in each class.

Here, πk = Pr(Y = k) is the marginal or prior probability for class k.
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Discriminant Analysis Overview

Suppose the outcome Y has K classe, and there are p features in X.

Linear discriminant analysis (LDA): For class k, the features
X ∼ Np(µk,Σ). These K distributions have different means
(centers), but they have the same variance–covariance matrix Σ.

Quadratic discriminant analysis (QDA): For class k, the features
X ∼ Np(µk,Σk). These K distributions have different means and
possibly different variance–covariance matrices.
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Linear Discriminant Analysis for p = 1

Suppose p = 1, we have only 1 predictor.
Under the assumption that fk(x) is normal or Gaussian:

where µk and σ2k are the mean and variance parameters for the kth class.
In LDA, we have σ21 = σ22 = · · · = σ2K .

Then, the posterior probability is :

The Bayes classifier will then assigning an observation to the class for
which pk(x) is the largest.
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Linear Discriminant Analysis for p = 1

discriminant score
Taking the log of pk(x) and rearrange the terms, we can show that this is
equivalent to assigning the observation to the class for which

is the largest.
Why the name LDA? Note the δk(x) is a linear function of x.
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Linear Discriminant Analysis for p = 1

In practice, we need to estimate the parameters µk, πk and σ2 first:

π̂k =
nk
n

and then use δk(x) for separation.
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Linear Discriminant Analysis for p = 1

Dashed: Bayes decision boundary
Solid: LDA decision boundary
Left panel: Known distribution
Right panel: Simulation of 20 samples each class.
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Linear Discriminant Analysis for p = 1

Summary

Assuming that the observations within each class come from a normal
distribution

Class-specific mean

Common variance

Plugging estimates for these parameters into the Bayes classifier
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Linear Discriminant Analysis for p > 1

Now we have multiple independent variables X = (X1, X2, ..., Xp), drawn
from multivariate normal distribution (MVN). We have a class-specific
mean vector and a common variance-covariance matrix.

p=2. Left: x1 ⊥ x2. Right: cor(x1, x2) = 0.7
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Linear Discriminant Analysis for p > 1

In general, MVN X ∼ N(µ,Σ):

When using LDA for p > 1, observations in the kth class are drawn from a
MVN N(µk,Σ). Here, µk is a class-specific mean vector, Σ is a
variance-covariance matrix that is common to all K classes.
Similarly, we classify an observation X = x to the class for which

is largest.
This is the vector/matrix version of δk(x) from p = 1
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Linear Discriminant Analysis for p > 1

The Bayes decision boundary represent the set of values of x s.t.
δk(x) = δl(x)

for k 6= l. Once again, we need to estimate µk, πk and Σ in practice.
Similar procedures are taken as in the univariate situation.
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Linear Discriminant Analysis for p > 1

Dashed: Bayes decision boundary
Solid: LDA decision boundary
Left panel: Known distribution
Right panel: Simulation of 20 samples each class
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Quadratic Discriminant Analysis

Introduction 27 / 38



Quadratic Discriminant Analysis

In LDA, we used a common variance-covariance matrix Σ for all classes K.
In Quadratic Discriminant Analysis(QDA), we dropped that assumption,
instead, we assume X ∼ N(µk,Σk), where Σk is the variance-covariance
matrix for the kth class.

Under this assumption, the Bayes classifier assigns X = x to the class
which

is largest.
Note the name quadratic came from the fact that δk(x) have quadratic
terms of x.
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LDA vs QDA

Why would one prefer LDA to QDA, or vice-versa?
Answer: Bias-variance trade-off.

Having p predictors means estimating extra Kp(p+ 1)/2 parameters in
Σk. This is expensive! $$$
p = 50, need some multiple of 1,275!

LDA is much less flexible than QDA, so it has substantially lower variance.
Can lead to improvement in prediction performance.
LDA can suffer from high bias when a common variance matrix is badly off.
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LDA vs QDA

LDA is better if:

Relatively few observations (small n), so reducing variance is crucial.

QDA is better if:

Training set is large.
Assumption of a common covariance matrix for all K is clearly
untenable.

Introduction 30 / 38



LDA vs QDA

Bayes: purple dashed. LDA: black dotted. QDA: green solid.
Left: Σ1 = Σ2. Right: Σ1 6= Σ2
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Comparison of Classification Methods

KNN, logistic regression, LDA, QDA
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logistic regression and LDA

Different motivation but closely connected.
Suppose p = 1. p1(x) and p2(x) = 1− p1(x) are the prob. that X = x
belongs to class 1 and 2, respectively.
In LDA, we can show:

where c0 and c1 are functions of µ1, µ2, and σ2.
In logistic regression:

Both produce linear decision boundaries.
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logistic regression and LDA

The only difference: β0 and β1 are estimated using maximum likelihood,
whereas c0 and c1 are computed using estimated mean and variance from
a normal distribution.
Same connection holds for p > 1.
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logistic regression and LDA

Since logistic regression and LDA differ only in their fitting procedures, do
they produce similar results?
Often, but not always.

LDA outperform logistic regression when Gaussian distribution assumption
with a common variance-covariance matrix is reasonable.
Logistic regression outperforms LDA if Gaussian assumptions are not met.
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KNN

KNN is a completely non-parametric approach.

No assumptions are made about the shape of the decision boundary.

KNN dominates when the true decision boundary if highly non-linear.

No info about predictor’s importance; no coefficients estimations.
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QDA

Serves as a compromise between the non-parametric KNN method
and the linear parametric LDA and logistic regression.
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Textbook chapters

ISLR: chapter 4: 4.1 - 4.5
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