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Lecture 8: Resampling Methods

Cross-Validation, Bootstrap
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Cross-validation and the Bootstrap

Two indispensable tools in modern machine learning and statistics.

These methods refit a model of interest to samples formed from the
training set, in order to obtain additional information about the fitted
model.

For example, they provide estimates of test-set prediction error, and
the standard deviation and bias of our parameter estimates.
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Training error vs test error

Recall the distinction between the test error and the training error:

The test error is the average error that results from using a statistical
learning method to predict the response on a new observation, one
that was not used in training the method.

In contrast, the training error can be easily calculated by applying the
statistical learning method to the observations used in its training.

But the training error rate often is quite different from the test error
rate, and in particular the former can dramatically underestimate the
latter.
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Training error vs test error
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Prediction error estimate

Best solution: a large designated test set. Often not available.

Some methods make a mathematical adjustment to the training error
rate. These include the Mallows’s Cp, AIC and BIC.

Here we instead consider a class of methods that estimate the test
error by holding out a subset of the training observations from the
fitting process, and then applying the statistical learning method to
those held out observations.
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Validation-set approach

Here we randomly divide the available set of samples into two parts: a
training set and a validation or hold-out set.

The model is fit on the training set, and the fitted model is used to
predict the responses for the observations in the validation set.

The resulting validation-set error provides an estimate of the test
error. This is typically assessed using MSE in the case of a
quantitative response and misclassification rate in the case of a
qualitative (discrete) response.
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Validation-set approach

A random splitting into two halves: left part is training set, right part is
validation set.
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Example: automobile data

Want to compare linear vs higher-order polynomial terms in a linear
regression for predicting mpg.

We randomly split the 392 observations into two sets, a training set
containing 196 of the data points, and a validation set containing the
remaining 196 observations.

Left panel shows single split; right panel shows 10 splits
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Drawbacks of validation set approach

Estimate of the test error can be highly variable, depending on
precisely which observations are included in the training set and which
observations are included in the validation set.

Only a subset of the observations — those that are included in the
training set rather than in the validation set — are used to fit the
model.

This suggests that the validation set error may tend to overestimate
the test error for the model fit on the entire data set. Why?
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K-fold Cross-validation

Widely used approach for estimating test error.

Estimates can be used to select best model, and to give an idea of
the test error of the final chosen model.

Idea is to randomly divide the data into K equal-sized parts. We
leave out part k, fit the model to the other K − 1 parts (combined),
and then obtain predictions for the left-out kth part.

This is done in turn for each part k = 1, 2, ...K, and then the results
are combined.
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K-fold Cross-validation: example

Divide data into K roughly equal-sized parts (K = 5 here)
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K-fold CV: details

Let the K parts be C1, C2, ...CK , where Ck denotes the indices of the
observations in part k. There are nk observations in part k: if N is a
multiple of K, then nk = n/K.

Compute

CV(K) =

K∑
k=1

nk
n
MSEk

where MSEk =
∑

i∈Ck
(yi − ŷi)2/nk, and ŷi is the fit for observation

i, obtained from the data with part k removed.

Setting K = n yields leave-one out cross-validation (LOOCV).
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LOOCV
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LOOCV: a nice special case

With least-squares linear or polynomial regression, an amazing
shortcut makes the cost of LOOCV the same as that of a single
model fit! The following formula holds:

CV(n) =
1

n

n∑
i=1

(
yi − ŷi
1− hi

)2

where yi is the ith fitted value from the original least squares fit, and
hi is the leverage (diagonal of the “hat” matrix) This is like the
ordinary MSE, except the ith residual is divided by 1− hi.
LOOCV sometimes useful, but typically doesn’t shake up the data
enough. The estimates from each fold are highly correlated.

Introduction 14 / 39



Auto data revisit
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True and est. test MSE in simulation

Blue: true test error in simulation.
Black dashed: LOOCV. Orange: 10-fold CV.
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Considerations in cross-validation

Since each training set is only (K − 1)/K as big as the original
training set, the estimates of prediction error will typically be biased
upward. Why?

This bias is minimized when K = n (LOOCV), but this estimate has
high variance.

K = 5 or 10 provides a good compromise for this bias-variance
tradeoff.
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CV for classification problems

Let the K parts be C1, C2, ...CK , where Ck denotes the indices of the
observations in part k. There are nk observations in part k: if N is a
multiple of K, then nk = n/K.

Compute:

CVK =

K∑
k=1

nk
n
Errk

where Errk =
∑

i∈Ck
I(yi 6= ŷi)/nk
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CV: right and wrong

Consider a simple classifier applied to some two-class data:

1 Starting with 5000 predictors and 50 samples, find the 100 predictors
having the largest correlation with the class labels.

2 We then apply a classifier such as logistic regression, using only these
100 predictors.

How do we estimate the test set performance of this classifier?
Can we apply cross-validation in step 2, forgetting about step 1?
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CV: right and wrong

The answer is NO.

This would ignore the fact that in Step 1, the procedure has already
seen the labels of the training data, and made use of them. This is a
form of training and must be included in the validation process.

It is easy to simulate realistic data with the class labels independent
of the outcome, so that true test error =50%, but the CV error
estimate that ignores Step 1 is zero! Try to do this yourself

This is a common error in genomics research.
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The Wrong and Right Way

Wrong: Apply cross-validation in step 2.

Right: Apply cross-validation to steps 1 and 2.
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Wrong way

Introduction 22 / 39



Right way
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The Bootstrap
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The Bootstrap

The bootstrap is a flexible and powerful statistical tool that can be
used to quantify the uncertainty associated with a given estimator or
statistical learning method.

For example, it can provide an estimate of the standard error of a
coefficient, or a confidence interval for that coefficient.
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The name

The use of the term bootstrap derives from the phrase to pull oneself
up by one’s bootstraps, widely thought to be based on one of the
eighteenth century “The Surprising Adventures of Baron
Munchausen” by Rudolph Erich Raspe:
The Baron had fallen to the bottom of a deep lake. Just when it
looked like all was lost, he thought to pick himself up by his own
bootstraps.
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An example

Suppose that we wish to invest a fixed sum of money in two financial
assets that yield returns of X and Y , respectively, where X and Y are
random quantities.

We will invest a fraction α of our money in X, and will invest the
remaining 1− α in Y .

We wish to choose α to minimize the total risk, or variance, of our
investment. In other words, we want to minimize
V ar(αX + (1− α)Y ).

One can show that the value that minimizes the risk is given by:

α =
σ2Y − σXY

σ2X + σ2Y − 2σXY

where σ2X = V ar(X), σ2Y = V ar(Y ), and σXY = Cov(X,Y ).
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An example

But the values of σ2X , σ2Y and σXY are unknown.

We can compute estimates for these quantities, σ̂2X , σ̂2Y and σ̂XY ,
using a data set that contains measurements for X and Y .

We can then estimate the value of α that minimizes the variance of
our investment using

α̂ =
σ̂2Y − σ̂XY

σ̂2X + σ̂2Y − 2σ̂XY
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An example

Each panel displays 100 simulated returns for investments X and Y .
From left to right and top to bottom, the resulting estimates for α are
0.576, 0.532, 0.657, and 0.651.
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An example

To estimate the standard deviation of α̂, we repeated the process of
simulating 100 paired observations of X and Y , and estimating α
1,000 times.
We thereby obtained 1,000 estimates for α, which we can call
α̂1, α̂2, ..., α̂1000.
For these simulations the parameters were set to σ2X = 1,σ2Y = 1.25,
and σXY = 0.5, and so we know that the true value of α is 0.6
(indicated by the red line).
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An example

The mean over all 1,000 estimates for α is

ā =
1

1000

1000∑
r=1

α̂r = 0.5996

very close to α = 0.6, and the standard deviation of the estimates is

This gives us a very good idea of the accuracy of α̂: SE(α̂) ≈ 0.083.
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Now back to the real world

The procedure outlined above cannot be applied, because for real
data we cannot generate new samples from the original population.

However, the bootstrap approach allows us to use a computer to
mimic the process of obtaining new data sets, so that we can estimate
the variability of our estimate without generating additional samples.

Rather than repeatedly obtaining independent data sets from the
population, we instead obtain distinct data sets by repeatedly
sampling observations from the original data set with replacement.

Each of these “bootstrap data sets” is created by sampling with
replacement, and is the same size as our original dataset. As a result
some observations may appear more than once in a given bootstrap
data set and some not at all.
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Example with just 3 observations

A graphical illustration of the bootstrap approach on a small sample
containing n = 3 observations. Each bootstrap data set contains n
observations, sampled with replacement from the original data set. Each
bootstrap data set is used to obtain an estimate of α.
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Denoting the first bootstrap data set by Z∗1, we use Z∗1 to produce
a new bootstrap estimate for α, which we call α∗1.

This procedure is repeated B times for some large value of B (say
100 or 1000), in order to produce B different bootstrap data sets,
Z∗1, Z∗2, ..., Z∗B and B corresponding α estimates, α∗1, α∗2, ..., α∗B.

We estimate the standard error of these bootstrap estimates using the
formula:
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A general picture for the bootstrap
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The bootstrap in general

In more complex data situations, figuring out the appropriate way to
generate bootstrap samples can require some thought.

For example, if the data is a time series, we can’t simply sample the
observations with replacement.

We can instead create blocks of consecutive observations, and sample
those with replacements. Then we paste together sampled blocks to
obtain a bootstrap dataset.
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The bootstrap usage

Primarily used to obtain standard errors of an estimate.

Also provides approximate confidence intervals for a population
parameter. For example, looking at the histogram in the middle panel
of the Figure for α, the 5% and 95% quantiles of the 1000 values is
(.43, .72).

This represents an approximate 90% confidence interval for the true
α.

The above interval is called a Bootstrap Percentile confidence
interval. It is the simplest method (among many approaches) for
obtaining a confidence interval from the bootstrap.
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Textbook chapters

ISLR: chapter 5: 5.1 - 5.2
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