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Tutorial session outline

@ Backgound in differential expression and deconvolution
@ Hands-on tutorial
e TOAST, CellDMC, TCA, CARseq, DESeq2, CeDAR, LRCDE, csSAM

© Methods comparison and conclusion
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Backgound in differential expression and deconvolution )
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Transcriptome data processing
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ntial gene expression analysis

samples: want to see if differences across
condition are significant
(w.r.t. biological and technical variation)

features (e.g. genes)

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516

ENSG00000000003 679 448 873 408 1138
ENSG00000000005 0 0 0 0 0
ENSG00000000419 467 515 621 365 587
ENSG00000000457 260 211 263 l64 245
ENSG00000000460 60 55 40 35 78

Harvard Chan Bioinformatics Core training modules. https://github.com/hbctraining
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Differential gene expression analysis

Goal: find genes that are expressed differently between conditions.

@ Assign a score for each gene to represent its statistical significance of
being different.

@ Rank the genes according to the score.
© Find a proper threshold for the score for calling DE.
Easy solutions:

@ Hypothesis testing (t-test, ANOVA, linear model, etc.) to get
p-values and use as scores

@ Use canonical cutoff (0.05) to call DE.
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Potential problems

@ Small sample size in hypothesis testing.
@ Gene expression values are not necessarily Normally distributed.

e Multiple testing problem (p=0.05 cutoff).
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Empirical Bayes method from limma

Smyth et al. (2004) Statistical Applications in Genetics and Molecular
Biology

Highly cited (>13,000 citations)

@ Use a Bayesian hierarchical model in multiple regression setting.

@ Borrow information from all genes to estimate gene specific variances.

o As a result, variance estimates will be “shrunk” toward the mean of all
variances. So very small variance scenarios will be alleviated.

@ Implemented in Bioconductor package “limma".
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Empirical Bayes method from limma

Let 5,; be the coefficient (difference in means in two-groups setting) for
gene g, factor j, assume:

N o? . .
Byi | Bgj 02 ~ N(Bgj, vg502)  s2|a2 ~ d—”xﬁg with priors:
g

1 1
P(ﬁyj 7& 0) =DPj- !Byj | Ug:ﬂw 7é 0~ N(O, UDJ'UE)- ,7? ~ KS?)XZM

. . dos? + d,s2
Posterior variance : 22 _ 2090 %g°

ST =
9 do+d,
Moderated t-statistics for P 393'
testing Bg; = 0: I v
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RNA-seq differential expression using DESeq?2

Love, M.1., Huber, W. & Anders, S. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550
(2014).

Cited by >47,000

The read count Kj; for gene 7 in sample j, using GLM of NB family with
a log link:

Kjj ~ NB(mean = p;;, dispersion = ;)

Hij = Sijdis

log ql’j = Z xjrﬂ:'r-
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What was missing? heterogeneous mixture

@ Human tissues are heterogeneous, as they have diverse cell
types/states.

e Traditional RNA-seq ( “bulk” RNA-seq) can measure averaged signal
across millions of cells.

Lawson et al. Nature. https://www.nature.com/articles/s41556-018-0236-7
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Bulk vs single-cell

Bulk RNA-seq Single-cell RNA-seq
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Deconvolution and beyond

Smoothie A Smoothie B
use: use:
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Cell composition of complex tissues
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Newman et al. Nat Biotechnol. 2019; Newman et al. Nat Methods. 2015
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Cell composition of complex tissues
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Li et al. Genome Biology 2019
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Cell-type-specific DE analysis

Bulk RNA

Cell Type
Deconvolution

Cell-type Proportions

Meng et al. Briefings in Bioinformatics 2023
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Cell-type-specific DE analysis

Method Package/Year  Input Algorithm

Cell type-specific Significance csSAM/ 2010 Gene expression Linear regression; deconvolute cases and

Analysis of Microarray (csSAM) microarray data controls separately. Inferences of csDEG are
based on t-statistics of permutation.

Differential gene expression DESeq2/ 2014 Gene expression Apply generalized NB* linear model and

based on NB* distribution
(DESeq2)

Linear Regression-based Cell
type- specific Differential
Expression (LRCDE)

Identification of Differentially
Methylated Cell types (CellDMC)
Tools for the Analysis of
heterogeneousS Tissues (TOAST)

Tensor Composition Analysis

(rca)

Cell type-aware Analysis of
RNA-seq (CARseq)

CeDAR

Ircde/ 2016

EpiDISH/ 2018

TOAST/ 2019

TCA/ 2019

CARseq/ 2021

TOAST/ 2022

RNA-seq data

General gene
expression

DNA methylation

Gene expression and

methylation data

DNA methylation

Gene expression
RNA-seq data

Gene expression or
methylation data

empirical Bayesian method to estimate the
shrunk posterior of dispersion and LFCZ.
Adopt Wald tests under Normal distribution.
Multivariate linear regressions: compare
csDEG coefficients of different phenotypes.
Inferences are based on two-sample t-test.

Multivariate linear regression solved by LSE.

Linear model framework: incorporate cell type
proportions, phenotype information, and
subject-specific covariates.

Apply tensor to deconvolute 2D matrices into
3D tensors, which further allows statistical
inference on variables of interest.

NB regression with parameters estimated
iteratively by IWLS. Inferences based on

likelihood ratio test.

Stemmed from TOAST, further incorporating
cell type DE/DM state correlations through

hierarchical clustering.
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Hands-on tutorial
o TOAST, CellDMC, TCA, CARseq, DESeq2, CeDAR, LRCDE, csSAMJ
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See R markdown tutorial
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Methods comparison and conclusion J
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Briefings in Bioinformatics, 2023, 24(1), 1-13

https://doi.org/10.1093/bib/bbac516
Review

OXFORD

A comprehensive assessment of cell type-specific
differential expression methods in bulk data
Guangun Meng, Wen Tang, Emina Huang, Ziyi Li and Hao Feng

Corresponding auther. Hao Feng, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA,
E-mail: hxf155@case.edu
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Simulation setup

o

Mg Kx1 ™~ MVN(m, Em)

Pgrx1 ~ MVN(d, 3q)
2]

MGXK - [l‘l’la i, MG]T; QGXK - [¢17 ¢27 veey d)G]T
o
Xaxk ~ Gamma{shape = oxp(®)’ scale = exp(M) - exp(®)}
o
0; ~ Dir(a)
o
r, = X01

yi|ri ~ Poisson(r;)
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Simulation setup

N = 50, 100, 150, 200

LFC = 0(null), 0.5, 0.75, 1.0, 1.25, 1.5.

10% or 0%(null) csDEG.

6 cell types

Reference panel generated from real bulk cell line.

Proportions from Dirichlet with parameters from scRNA-seq data.

Gamma-Poisson for observed counts.
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Comparisons of csDEG detection accuracy
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Precision at various N and LFC

| I TopGene
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Expression stratification
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Impact of cell type proportions
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Software runtime
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o Cell type-specific differentially expressed genes (csDEG) analysis is
successful at dissecting bulk RNA-seq data and identifying biomarkers
in a finer resolution.

o Effect size, baseline expression level and cell type composition are the
leading factors affecting csDEG calling accuracy.

@ CARseq, TOAST, CellDMC and TCA are the most reliable methods
in terms of precision and sensitivity.

@ Insufficient power can be expected for low expression genes. Larger
sample size is needed compared with traditional DE analysis.

@ csDEG is a challenging task itself, with room to improve to properly
handle low signal-to-noise ratio and low expression genes.
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Additional Resources

Springer Handbooks of Computational Statistics

Handbook
of Statistical
Bioinformatics

@ Springer

Part lIl: Cell Type-Specific Analysis for High-throughput Data. Covers
tools TOAST, CellMix, EpiDISH, RefFreeEWAS, and MuSiC.
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ISLET: Individual-Specific CeLl TypE Referencing Tool

Wednesday, March 22. session 95. 9:15 am — 9:30 am
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ENAR 2023 Spring Meeting

March 19-22

JW Marriott Nashville | Nashville, TN L‘!ANN'VEHSA“V
Wi ar’”

Decomposing Admixed Genomics Data: Cell-type-aware Analysis Methodology Advances
Chair & Organizer: Hao Feng, Case Western Reserve University

Speakers:

Aaron Newman, Stanford University

Stephanie Hicks, Johns Hopkins Bloomberg School of Public Health

Wenyi Wang, The University of Texas MD Anderson Cancer Center

Rafael Irizarry, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health.

Tuesday, March 21. 8:30 am — 10:15 am
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